查看“︁欧拉伪素数”︁的源代码
←
欧拉伪素数
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{TA|G1=Math}} '''欧拉伪素数'''({{lang-en|Euler pseudoprime}})是[[伪素数]]的一种。对于奇[[合数]]''n''以及与其[[互素]]的自然数''a'',如果 : <math>a^{(n-1)/2} \equiv \pm 1\pmod{n}</math> 成立,则称''n''为关于''a''的欧拉伪素数。欧拉伪素数是[[费马伪素数]]的推广,所有欧拉伪素数同时也是费马伪素数。 与费马伪素数类似,欧拉伪素数的定义也是源于[[费马小定理]]。该定理表明,对于[[素数]]''p''以及整数''a'',有 ''a''<sup>''p''−1</sup> = 1 (mod ''p'')。对大于2的素数''p'',''p''可以表示为2''q'' + 1 ,其中''q''为整数。于是''a''<sup>(2''q''+1) − 1</sup> = 1 (mod ''p'') 成立。再进一步化简为''a''<sup>2''q''</sup> − 1 = 0 (mod ''p'')。通过因式分解,得到(''a''<sup>''q''</sup> − 1)(''a''<sup>''q''</sup> + 1) = 0 (mod ''p''),即''a''<sup>(''p''−1)/2</sup> = ±1 (mod ''p'')。 上式可以用作概率[[素性检验]],其可靠性是[[费马素性检验]]的两倍。不过无法基于欧拉伪素数对素数进行确定性检验,因为存在'''绝对欧拉伪素数''',即其关于所有与其互素的数都是欧拉伪素数。绝对欧拉伪素数是[[卡迈克尔数]](即绝对费马伪素数)的[[子集]]。最小的绝对欧拉伪素数为[[1729]] = 7×13×19。 == 示例 == {|class="wikitable" |''n'' |关于''n''的欧拉伪素数 |- |1 |9, 15, 21, 25, 27, 33, 35, 39, 45, 49, 51, 55, 57, 63, 65, 69, 75, 77, 81, 85, 87, 91, 93, 95, 99, 105, 111, 115, 117, 119, 121, 123, 125, 129, 133, 135, 141, 143, 145, 147, 153, 155, 159, 161, 165, 169, 171, 175, 177, 183, 185, 187, 189, 195, 201, 203, 205, 207, 209, 213, 215, 217, 219, 221, 225, 231, 235, 237, 243, 245, 247, 249, 253, 255, 259, 261, 265, 267, 273, 275, 279, 285, 287, 289, 291, 295, 297, 299, ... |- |2 |341, 561, 1105, 1729, 1905, 2047, 2465, 3277, 4033, 4681, 5461, 6601, 8321, 8481, ... |- |3 |121, 703, 1541, 1729, 1891, 2465, 2821, 3281, 4961, 7381, 8401, 8911, ... |- |4 |341, 561, 645, 1105, 1387, 1729, 1905, 2047, 2465, 2701, 2821, 3277, 4033, 4369, 4371, 4681, 5461, 6601, 7957, 8321, 8481, 8911, ... |- |5 |217, 781, 1541, 1729, 5461, 5611, 6601, 7449, 7813, ... |- |6 |185, 217, 301, 481, 1111, 1261, 1333, 1729, 2465, 2701, 3421, 3565, 3589, 3913, 5713, 6533, 8365, ... |- |7 |25, 325, 703, 817, 1825, 2101, 2353, 2465, 3277, 4525, 6697, 8321, ... |- |8 |9, 21, 65, 105, 133, 273, 341, 481, 511, 561, 585, 1001, 1105, 1281, 1417, 1541, 1661, 1729, 1905, 2047, 2465, 2501, 3201, 3277, 3641, 4033, 4097, 4641, 4681, 4921, 5461, 6305, 6533, 6601, 7161, 8321, 8481, 9265, 9709, ... |- |9 |91, 121, 671, 703, 949, 1105, 1541, 1729, 1891, 2465, 2665, 2701, 2821, 3281, 3367, 3751, 4961, 5551, 6601, 7381, 8401, 8911, ... |- |10 |9, 33, 91, 481, 657, 1233, 1729, 2821, 2981, 4187, 5461, 6533, 6541, 6601, 7777, 8149, 8401, ... |- |11 |133, 305, 481, 645, 793, 1729, 2047, 2257, 2465, 4577, 4921, 5041, 5185, 8113, ... |- |12 |65, 91, 133, 145, 247, 377, 385, 1649, 1729, 2041, 2233, 2465, 2821, 3553, 6305, 8911, 9073, ... |- |13 |21, 85, 105, 561, 1099, 1785, 2465, 5149, 5185, 7107, 8841, 8911, 9577, 9637, ... |- |14 |15, 65, 481, 781, 793, 841, 985, 1541, 2257, 2465, 2561, 2743, 3277, 5185, 5713, 6533, 6541, 7171, 7449, 7585, 8321, 9073, ... |- |15 |341, 1477, 1541, 1687, 1729, 1921, 3277, 6541, 9073, ... |- |16 |15, 85, 91, 341, 435, 451, 561, 645, 703, 1105, 1247, 1271, 1387, 1581, 1695, 1729, 1891, 1905, 2047, 2071, 2465, 2701, 2821, 3133, 3277, 3367, 3683, 4033, 4369, 4371, 4681, 4795, 4859, 5461, 5551, 6601, 6643, 7957, 8321, 8481, 8695, 8911, 9061, 9131, 9211, 9605, 9919, ... |- |17 |9, 91, 145, 781, 1111, 1305, 1729, 2149, 2821, 4033, 4187, 5365, 5833, 6697, 7171, ... |- |18 |25, 49, 65, 133, 325, 343, 425, 1105, 1225, 1369, 1387, 1729, 1921, 2149, 2465, 2977, 4577, 5725, 5833, 5941, 6305, 6517, 6601, 7345, ... |- |19 |9, 45, 49, 169, 343, 561, 889, 905, 1105, 1661, 1849, 2353, 2465, 2701, 3201, 4033, 4681, 5461, 5713, 6541, 6697, 7957, 8145, 8281, 8401, 9997, ... |- |20 |21, 57, 133, 671, 889, 1281, 1653, 1729, 1891, 2059, 2413, 2761, 3201, 5461, 5473, 5713, 5833, 6601, 6817, 7999, ... |- |21 |65, 221, 703, 793, 1045, 1105, 2465, 3781, 5185, 5473, 6541, 7363, 8965, 9061, ... |- |22 |21, 69, 91, 105, 161, 169, 345, 485, 1183, 1247, 1541, 1729, 2041, 2047, 2413, 2465, 2821, 3241, 3801, 5551, 7665, 9453, ... |- |23 |33, 169, 265, 341, 385, 481, 553, 1065, 1271, 1729, 2321, 2465, 2701, 2821, 3097, 4033, 4081, 4345, 4371, 4681, 5149, 6533, 6541, 7189, 7957, 8321, 8651, 8745, 8911, 9805, ... |- |24 |25, 175, 553, 805, 949, 1541, 1729, 1825, 1975, 2413, 2465, 2701, 3781, 4537, 6931, 7501, 9085, 9361, ... |- |25 |217, 561, 781, 1541, 1729, 1891, 2821, 4123, 5461, 5611, 5731, 6601, 7449, 7813, 8029, 8911, 9881, ... |- |26 |9, 25, 27, 45, 133, 217, 225, 475, 561, 589, 703, 925, 1065, 2465, 3325, 3385, 3565, 3825, 4741, 4921, 5041, 5425, 6697, 8029, 9073, ... |- |27 |65, 121, 133, 259, 341, 365, 481, 703, 1001, 1541, 1649, 1729, 1891, 2465, 2821, 2981, 2993, 3281, 4033, 4745, 4921, 4961, 5461, 6305, 6533, 7381, 7585, 8321, 8401, 8911, 9809, 9841, 9881, ... |- |28 |9, 27, 145, 261, 361, 529, 785, 1305, 1431, 2041, 2413, 2465, 3201, 3277, 4553, 4699, 5149, 7065, 8321, 8401, 9841, ... |- |29 |15, 21, 91, 105, 341, 469, 481, 793, 871, 1729, 1897, 2105, 2257, 2821, 4371, 4411, 5149, 5185, 5473, 5565, 6097, 7161, 8321, 8401, 8421, 8841, ... |- |30 |49, 133, 217, 341, 403, 469, 589, 637, 871, 901, 931, 1273, 1537, 1729, 2059, 2077, 2821, 3097, 3277, 4081, 4097, 5729, 6031, 6061, 6097, 6409, 6817, 7657, 8023, 8029, 8401, 9881, ... |} ==关于''n''的最小欧拉伪素数 == {|class="wikitable" |''n'' |最小欧拉伪素数 |''n'' |最小欧拉伪素数 |''n'' |最小欧拉伪素数 |''n'' |最小欧拉伪素数 |- |1 |9 |33 |545 |65 |33 |97 |21 |- |2 |341 |34 |21 |66 |65 |98 |9 |- |3 |121 |35 |9 |67 |33 |99 |25 |- |4 |341 |36 |35 |68 |25 |100 |9 |- |5 |217 |37 |9 |69 |35 |101 |25 |- |6 |185 |38 |39 |70 |69 |102 |133 |- |7 |25 |39 |133 |71 |9 |103 |51 |- |8 |9 |40 |39 |72 |85 |104 |15 |- |9 |91 |41 |21 |73 |9 |105 |451 |- |10 |9 |42 |451 |74 |15 |106 |15 |- |11 |133 |43 |21 |75 |91 |107 |9 |- |12 |65 |44 |9 |76 |15 |108 |91 |- |13 |21 |45 |133 |77 |39 |109 |9 |- |14 |15 |46 |9 |78 |77 |110 |111 |- |15 |341 |47 |65 |79 |39 |111 |55 |- |16 |15 |48 |49 |80 |9 |112 |65 |- |17 |9 |49 |25 |81 |91 |113 |21 |- |18 |25 |50 |21 |82 |9 |114 |115 |- |19 |9 |51 |25 |83 |21 |115 |57 |- |20 |21 |52 |51 |84 |85 |116 |9 |- |21 |65 |53 |9 |85 |21 |117 |49 |- |22 |21 |54 |55 |86 |65 |118 |9 |- |23 |33 |55 |9 |87 |133 |119 |15 |- |24 |25 |56 |33 |88 |87 |120 |77 |- |25 |217 |57 |25 |89 |9 |121 |15 |- |26 |9 |58 |57 |90 |91 |122 |33 |- |27 |65 |59 |15 |91 |9 |123 |85 |- |28 |9 |60 |341 |92 |21 |124 |25 |- |29 |15 |61 |15 |93 |25 |125 |9 |- |30 |49 |62 |9 |94 |57 |126 |25 |- |31 |15 |63 |341 |95 |141 |127 |9 |- |32 |25 |64 |9 |96 |65 |128 |49 |} == 参见 == * [[欧拉-雅可比伪素数]] * [[费马伪素数]] * [[強偽質數]] * [[卡迈克尔数]] == 参考文献 == *M. Koblitz, "A Course in Number Theory and Cryptography", Springer-Verlag, 1987. *H. Riesel, "Prime numbers and computer methods of factorisation", Birkhäuser, Boston, Mass., 1985. {{質數}} [[Category:伪素数]]
该页面使用的模板:
Template:Lang-en
(
查看源代码
)
Template:TA
(
查看源代码
)
Template:質數
(
查看源代码
)
返回
欧拉伪素数
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息