查看“︁欠四面十二面體”︁的源代码
←
欠四面十二面體
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{NoteTA |G1=Math |1=zh:鷂形;zh-cn:筝形;zh-hk:鳶形;zh-tw:鳶形; }} {{Infobox polyhedron | name = 欠四面十二面體 | polyhedron = 欠四面十二面體 | image = [[File:Tetrahedral_self-dual_hexadecahedron.png|240px]]<br/>自身對偶形式<br/>[[File:Tetrahedrally_stellated_icosahedron.png|240px]]<br/>星形化正二十面體形式<br/>[[File:Tetrahedrally_diminished_regular_dodecahedron.png|240px]]<br/>欠缺四個頂角的正十二面體形式 | Type = [[凸多面體]] | Coxeter_diagram = | Face = 16 | Edge = 30 | Vertice = 16 | Face_List = 4個[[三角形]]<br/>12個[[四邊形]] | Vertice_type = | Vertice_configuration = {{math|3.4.4.4<br/>4.4.4}} | Wythoff = | Face_configuration = | Symmetry_group = {{math|{{link-en|四面體群對稱性|Tetrahedral symmetry|T}}, [3,3]<sup>+</sup>, (332),}} order 12 | Index_references = | Rotation_group = | Dihedral_angle = | Properties = 凸 | 3d_image = Self-dual form tetrahedrally diminished dodecahedron.stl | vfigimage = | dual_image = Green self-dual form tetrahedrally diminished dodecahedron.svg | net_image = Net of self-dual form tetrahedrally diminished dodecahedron.svg }} '''[[欠_(多面體變換)#添加稜的欠|欠]]四面十二面體'''(tetrahedrally diminished dodecahedron)又稱'''四面星形化二十面體'''(tetrahedrally stellated icosahedron)或'''螺旋四面體'''(propello tetrahedron)<ref name="article hart2000sculpture">{{cite journal |title=Sculpture based on Propellorized Polyhedra |author=Hart, George W |journal=Proceedings of MOSAIC |pages=61-70 |url=http://www.georgehart.com/propello/propello.html |year=2000 |access-date=2023-01-10 |archive-date=2017-11-03 |archive-url=https://web.archive.org/web/20171103221228/http://georgehart.com/propello/propello.html |dead-url=no }}</ref>是一種拓樸自身對偶的[[十六面體]],由4個正三角形[[面 (幾何)|面]]、12個[[全等]]的四邊形面、30條邊和16個頂點組成。<ref name="Tetrahedrally Stellated Icosahedron"/> 欠四面十二面體並非是少4個面的[[十二面體]],其名稱是來自[[#欠缺四個頂角的正十二面體形式|欠缺四個頂角的正十二面體形式]]的欠四面十二面體,之所以稱為欠四面十二面體是因為其在四個頂角處各[[欠_(多面體變換)#添加稜的欠|欠缺]]了四面體狀的結構,因此稱為欠四面十二面體。 == 形式 == 欠四面十二面體有三種形式,一種是多爾曼盧克對偶構造的[[自身對偶]]形式;一種是欠缺四個頂角的正十二面體形式;還有一種是星形化的正二十面體形式。<ref name="www.polyhedra-world.nc">{{cite web | url=http://www.polyhedra-world.nc/tetra_di_.htm | title=tetrahedrally truncated dodecahedron and stellated icosahedron | author=Martin Kraus | website=polyhedra-world.nc | access-date=2023-01-10 | archive-date=2023-01-10 | archive-url=https://web.archive.org/web/20230110165559/http://www.polyhedra-world.nc/tetra_di_.htm | dead-url=no }}</ref> === 自身對偶形式 === 在自身對偶形式中,欠四面十二面體是302404種自身對偶的十六面體中,1476種至少具有2階對稱性中唯一具有四面體對稱性的立體。<ref>{{cite web | url=http://dmccooey.com/polyhedra/SelfDualHexadecahedron1.html | title=Symmetric Canonical Self-Dual Hexadecahedra: Self-Dual Hexadecahedron #1 (canonical) | author=David I. McCooey | year=2015 | access-date=2023-01-10 | archive-date=2023-05-21 | archive-url=https://web.archive.org/web/20230521082842/http://dmccooey.com/polyhedra/SelfDualHexadecahedron1.html | dead-url=no }}</ref> <gallery widths="180px" heights="180px"> File:Tetrahedral_self-dual_hexadecahedron.png|自身對偶形式的欠四面十二面體 File:Self-dual form tetrahedrally diminished dodecahedron.stl|自身對偶形式的欠四面十二面體的3D模型 File:Net of self-dual form tetrahedrally diminished dodecahedron.svg|自身對偶形式的欠四面十二面體的展開圖</gallery> === 欠缺四個頂角的正十二面體形式 === 在[[欠 (多面體變換)|欠缺]]四個頂角的正十二面體形式中,其移除了4個正十二面體的頂角,並將相鄰的五邊形面切割成梯形。<ref name="www.polyhedra-world.nc"/>這種形式的欠四面十二面體有兩種二面角,分別為梯形和梯形的二面角,以及梯形和三角形的二面角。其中,梯形和梯形的二面角為:<ref name="teddoe">{{cite web | url = https://www.bendwavy.org/klitzing/incmats/tet-dim-doe.htm | title = teddoe, tetrahedrally diminished dodecahedron | author = Richard Klitzing | website = bendwavy.org | access-date = 2023-01-10 | archive-date = 2023-01-11 | archive-url = https://web.archive.org/web/20230111140737/https://bendwavy.org/klitzing/incmats/tet-dim-doe.htm | dead-url = no }}</ref> :<math>\arccos{-\frac{1}{\sqrt{5}}} \approx 116.565051^\circ</math> 而梯形和三角形的[[二面角]]為: :<math>\arccos{\sqrt{\frac{5+2\sqrt{5}}{15}}} \approx 142.622632^\circ</math> <gallery widths="180px" heights="180px"> File:Tetrahedrally diminished regular dodecahedron.png|欠缺四個頂角的正十二面體 File:Tetrahedrally diminished dodecahedron.stl|欠缺四個頂角的正十二面體的3D模型 File:Tetrahedrally diminished regular dodecahedron net.png|欠缺四個頂角的正十二面體的展開圖</gallery> === 星形化正二十面體形式 === 在星形化正二十面體形式中,其是32種以四面提群對稱性定義的星形化正二十面體之一,並具有[[鳶形]]面。<ref>{{cite web|url=http://www.georgehart.com/virtual-polyhedra/stellations-icosahedron-tetrahedral.html|title=Tetrahedral Stellations of the Icosahedron|author=George W. Hart|year=1996|access-date=2023-01-10|archive-date=2023-05-26|archive-url=https://web.archive.org/web/20230526191524/https://www.georgehart.com/virtual-polyhedra/stellations-icosahedron-tetrahedral.html|dead-url=no}}</ref>這種欠四面十二面體是[[五複合四面體]]中,少一個四面體之幾何結構的星狀核<ref>{{cite web | url=http://www.mi.sanu.ac.rs/vismath/zefiro2008/__generation_of_icosahedron_by_5tetrahedra.htm | title=Generation of an icosahedron by the intersection of five tetrahedra: geometrical and crystallographic features of the intermediate polyhedra | author=Livio Zefiro | website=www.mi.sanu.ac.rs | access-date=2023-01-10 | archive-date=2016-01-23 | archive-url=https://web.archive.org/web/20160123033638/http://www.mi.sanu.ac.rs/vismath/zefiro2008/__generation_of_icosahedron_by_5tetrahedra.htm | dead-url=no }}</ref>。在康威多面體表示法中,其可以用pT來表示,代表通過{{link-en|喬治·W·哈特|George W. Hart}}的螺旋變換(propeller operator)的[[正四面體]]。<ref>{{cite web|url=http://www.georgehart.com/virtual-polyhedra/conway_notation.html|title=Conway Notation for Polyhedra|author=George W. Hart|year=1996|quote=pT is the tetrahedrally stellated icosahedron|access-date=2023-01-10|archive-date=2014-11-29|archive-url=https://web.archive.org/web/20141129085342/http://www.georgehart.com/virtual-polyhedra/conway_notation.html|dead-url=no}}</ref> 假設中交球的半徑为1,則存在一个邊長比為0.849:1.057的典型形式,其鳶形面保持等腰。 <gallery widths="180px" heights="180px"> File:Tetrahedrally_stellated_icosahedron.png|星形化正二十面體形式 File:Tetrahedrally stellated icosahedron.stl|星形化正二十面體形式的3D模型 File:Tetrahedrally stellated icosahedron net.png|星形化正二十面體形式的展開圖</gallery> == 性質 == === 構造 === 欠四面十二面體具有手性四面體群對稱性,因此其可以構造自四個面星形化的五角十二面體群對稱性之[[扭稜四面體]]<ref name="Tetrahedrally Stellated Icosahedron">{{cite web|url=http://www.georgehart.com/virtual-polyhedra/tetrahedrally_stellated_icosahedron.html|title=Tetrahedrally Stellated Icosahedron|author=George W. Hart|year=1996|access-date=2023-01-10|archive-date=2022-11-27|archive-url=https://web.archive.org/web/20221127085318/https://www.georgehart.com/virtual-polyhedra/tetrahedrally_stellated_icosahedron.html|dead-url=no}}</ref>或構造自欠缺4個頂點的[[五角十二面體]]。 === 頂點座標 === 自身對偶形式的欠四面十二面體頂點座標為:<ref>{{cite web | url=http://dmccooey.com/polyhedra/SelfDualHexadecahedron1.txt | title=data of Self-Dual Hexadecahedron #1 (canonical) | author=David I. McCooey | year=2015 | access-date=2023-01-10 | archive-date=2021-02-23 | archive-url=https://web.archive.org/web/20210223171347/http://dmccooey.com/polyhedra/SelfDualHexadecahedron1.txt | dead-url=no }}</ref> :<math>\left( C_1,\,\pm C_0,\,\pm 1\right)</math> :<math>\left( -C_1,\,\mp C_0,\,\pm 1\right)</math> :<math>\left( 1,\,\pm C_1,\,\pm C_0\right)</math> :<math>\left( -1,\,\mp C_1,\,\pm C_0\right)</math> :<math>\left( C_0,\,\pm 1,\,\pm C_1\right)</math> :<math>\left( -C_0,\,\mp 1,\,\pm C_1\right)</math> :<math>\left( C_2,\,\mp C_2,\,\pm C_2\right)</math> :<math>\left( -C_2,\,\pm C_2,\,\pm C_2\right)</math> 其中: :<math>C_0=\frac{\sqrt[3]{4\left(11+3\sqrt{69}\right) }-\sqrt[3]{4\left( 3\sqrt{69}-11\right) }-1}{3}</math> ::≈0.139680581996 :<math>C_1=\frac{\sqrt[3]{4\left(25+3\sqrt{69}\right)}+\sqrt[3]{4\left(25-3\sqrt{69}\right)}-5}{3}</math> ::≈0.509755332493 :<math>C_2=\frac{\sqrt[3]{4\left(371+33\sqrt{69}\right)}+\sqrt[3]{4\left(371-33\sqrt{69}\right)}-1}{33}</math> ::≈0.606267870861 == 相關幾何體 == 欠四面十二面體是雙曲均勻堆砌體{{link-en|部分欠缺二十面體堆砌|Partially diminished icosahedral honeycomb}}(施萊夫利符號:pd{3,5,3})的頂點圖<ref name="Richard Klitzing pd{3,5,3}">{{cite web | url = https://www.bendwavy.org/klitzing/incmats/pt353.htm | title = pd{3,5,3} | author = Richard Klitzing | website = bendwavy.org | access-date = 2023-01-10 }}</ref>,每個頂點都是12個五角反棱柱和4個正十二面體的公共頂點。<ref>Wendy Y. Krieger, Walls and bridges: The view from six dimensions, ''Symmetry: Culture and Science'' Volume 16, Number 2, pages 171–192 (2005) [http://symmetry.hu/content/aus_journal_content_abs_2005_16_2.html] {{Webarchive|url=https://web.archive.org/web/20131007060826/http://symmetry.hu/content/aus_journal_content_abs_2005_16_2.html |date=2013-10-07 }}</ref> <gallery> File:Partial truncation order-3 icosahedral honeycomb verf.png|最為頂點圖以施萊格爾投影呈現的欠四面十二面體 File:H3_353-pd_center_ultrawide2.png|{{link-en|部分欠缺二十面體堆砌|Partially diminished icosahedral honeycomb}} </gallery> == 參見 == *[[四階十二面體]] == 參考文獻 == {{Reflist}} [[Category:多面體]]
该页面使用的模板:
Template:Cite journal
(
查看源代码
)
Template:Cite web
(
查看源代码
)
Template:Infobox polyhedron
(
查看源代码
)
Template:Link-en
(
查看源代码
)
Template:NoteTA
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:Webarchive
(
查看源代码
)
返回
欠四面十二面體
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息