查看“︁格里旺克函数”︁的源代码
←
格里旺克函数
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
'''格里旺克函数'''(Griewank function)是[[數學]]上常用于测试[[优化]]程序效率的[[函数]],定义如下:<ref>Griewank, A. O. "Generalized Decent for Global Optimization." J. Opt. Th. Appl. 34, 11-39, 1981</ref><ref>{{Cite journal |last=Bosse |first=Torsten F. |last2=Bücker |first2=H. Martin |date=2024-10-29 |title=A piecewise smooth version of the Griewank function |url=https://www.tandfonline.com/doi/full/10.1080/10556788.2024.2414186 |journal=Optimization Methods and Software |language=en |pages=1–11 |doi=10.1080/10556788.2024.2414186 |issn=1055-6788|doi-access=free }}</ref> <math>G(x_1,x_2,\cdots,x_n)=1+\frac{1}{4000}\sum_{1}^{n}x_{i}^2-\prod_{i=1}^{n}cos(\frac{x_i)}{\sqrt(i)}</math> ==一阶格里旺函数== [[File:1st order Griewank function.png|thumb|400px| 一阶格里旺函数]] <math>g := 1+(1/4000)*x[1]^2-cos(x[1])</math> 如图所示,一阶格里旺函数有许多极点。<ref>Locatelli, M. "A Note on the Griewank Test Function." J. Global Opt. 25, 169-174, 2003</ref>取上述函数的一阶导数,令其为0: <math>\frac{1}{2000}*x[1]+sin(x[1]) = 0</math> 用数值解法,求其中在实数域[-100..100]之间的解,共得62个,列出如下: [-97.438110610025603200, -94.200661844477748520, -91.151778636270389965, -87.920619819329359985, -84.865447114417916660, -81.640577359698817225, -78.579116013127494725, -75.360534496781834905, -72.292785301096032350, -69.080491261738200370, -66.006454947055212230, -62.800447685694571355, -59.720124919768677970, -56.520403799747265470, -53.433795188029228405, -50.240359634965042195, -47.147465720656019171, -43.960315222391878044, -40.861136486491770843, -37.680270593049735600, -34.574807454399982858, -31.400225777941327138, -28.288478593262152626, -25.120180808052873462, -22.002149871974999083, -18.840135714356858698, -15.715821259447690012, -12.560090527814781691, -9.4294927245990724370, -6.2800452793799046870, -3.1431642363549054240, 3.1431642363549054240, 6.2800452793799046870, 9.4294927245990724370, 12.560090527814781691, 15.715821259447690012, 18.840135714356858698, 22.002149871974999083, 25.120180808052873462, 28.288478593262152626, 31.400225777941327138, 34.574807454399982858, 37.680270593049735600, 40.861136486491770847, 43.960315222391878044, 47.147465720656019171, 50.240359634965042195, 53.433795188029228405, 56.520403799747265470, 59.720124919768677970, 62.800447685694571355, 66.006454947055212230, 69.080491261738200370, 72.292785301096032350, 75.360534496781834905, 78.579116013127494725, 81.640577359698817225, 84.865447114417916660, 87.920619819329359985, 91.151778636270389965, 94.200661844477748520, 97.438110610025603200, 0.] 在[-10000,10000]区间,极点个数=6365 ==二阶格里旺函数== [[File:Griewank function 3D plot.png|thumb|left|330px|2nd order Griewank function 3D plot]] [[File:2nd order Griewank function contour plot.png|thumb|300px|2nd order Griewank function contour plot]] <math>g2 := 1+(1/4000)*x[1]^2+(1/4000)*x[2]^2-cos(x[1])*cos((1/2)*x[2]*\sqrt(2))</math> ==三阶格里旺函数== [[File:Third order Griewank function Maple animation.gif|thumb|300px|Third order Griewank function Maple animation]] <math>{1+(1/4000)*x[1]^2+(1/4000)*x[2]^2+(1/4000)*x[3]^2-cos(x[1])*cos((1/2)*x[2]*\sqrt(2))*cos((1/3)*x[3]*sqrt(3))} </math> ==相關條目== * {{link-en|Himmelblau函數|Himmelblau's function}} * {{link-en|Rastrigin函數|Rastrigin function}} * [[Rosenbrock函數]] ==参考文献== <references/> [[Category:特殊函数]] [[Category:數學最佳化]]
该页面使用的模板:
Template:Cite journal
(
查看源代码
)
Template:Link-en
(
查看源代码
)
返回
格里旺克函数
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息