查看“︁极地放大效应”︁的源代码
←
极地放大效应
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
[[File:GISS_temperature_2000-09.png|缩略图| NASA GISS 2000-2009 年温度趋势图,显示出强烈的北极放大效应。]] '''极地放大效应'''是一种气候变化中的现象,即净辐射平衡发生的任何变化(例如温室效应增强)往往会在两极附近产生比行星平均温度更大的温度变化。 <ref name="Polar amplification">{{Cite journal|title=A theory for polar amplification from a general circulation perspective|author=Sukyoung Lee|url=http://www.meteo.psu.edu/~sxl31/papers/APJAS_special_revision.pdf|last=|first=|date=January 2014|journal=Asia-Pacific Journal of the Atmospheric Sciences|issue=1|doi=10.1007/s13143-014-0024-7|volume=50|pages=31–43|bibcode=2014APJAS..50...31L|access-date=2022-02-23|archive-date=2016-03-04|archive-url=https://web.archive.org/web/20160304134258/http://www.meteo.psu.edu/~sxl31/papers/APJAS_special_revision.pdf}}</ref>这一效应通常指极地变暖幅度与热带变暖幅度的比率。在具有可以限制向太空发射长波辐射(即具有[[温室效应]])的大气层的行星上,地表温度将比简单的[[行星平衡溫度|行星平衡温度]]计算所预测的要高。如果一个星球上的大气或广阔的海洋能够向极地输送热量,两极将比当地净辐射平衡预测的更温暖,而赤道地区更冷。 <ref>{{Cite book|last=Pierrehumbert, R. T.|year=2010|title=Principles of Planetary Climate|publisher=Cambridge University Press|isbn=978-0521865562}}</ref>当全球平均温度相对于参考气候较低时,两极将经历最大的变冷幅度;或者,当全球平均温度较高时,两极将经历最大的变暖幅度。 <ref name="Polar amplification" /> 在极端情况下,[[金星]]被认为在其演变历史中经历了非常严重的温室效应<ref name="Kasting">{{Cite journal|title=Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus|url=https://zenodo.org/record/1253896|last=Kasting|first=J. F.|journal=Icarus|issue=3|doi=10.1016/0019-1035(88)90116-9|year=1988|volume=74|pages=472–94|bibcode=1988Icar...74..472K|pmid=11538226|access-date=2022-02-23|archive-date=2019-12-07|archive-url=https://web.archive.org/web/20191207210741/https://zenodo.org/record/1253896}}</ref>以至于其两极已经充分变暖,其行星表面温度几乎是[[等温过程|等温]](两极和赤道之间没有差异)的. <ref name="nssdc">{{Cite web|title=Venus Fact Sheet|url=http://nssdc.gsfc.nasa.gov/planetary/factsheet/venusfact.html|access-date=2007-10-12|author=Williams|date=15 April 2005|first=David R.|publisher=NASA|archive-date=2016-03-08|archive-url=https://web.archive.org/web/20160308174416/http://nssdc.gsfc.nasa.gov/planetary/factsheet/venusfact.html}}</ref> <ref>{{Cite web|title=Titan, Mars and Earth: Entropy Production by Latitudinal Heat Transport|url=http://sirius.bu.edu/withers/pppp/pdf/mepgrl2001.pdf|access-date=2007-08-21|author=Withers, Paul G.|year=2001|publisher=[[Ames Research Center]], University of Arizona Lunar and Planetary Laboratory|archive-date=2018-10-03|archive-url=https://web.archive.org/web/20181003224659/http://sirius.bu.edu/withers/pppp/pdf/mepgrl2001.pdf}}</ref>在[[地球|地球上]],水蒸气和微量气体提供了较弱的温室效应,而大气和广阔的海洋则提供了有效的极地热传输。如下所述,[[古氣候學|古气候]]变化和最近的[[全球变暖]]变化都表现出强烈的极地放大效应。 '''北极放大效应'''只是[[北极点|地球]]北极的极地放大效应;'''南极放大效应'''是[[南极]]的放大效应。 == 研究历史 == Mikhail Budyko于 1969 年发表了一项与北极放大效应有关的基于观测的研究, <ref>{{Cite journal|title=The effect of solar radiation variations on the climate of the Earth|last=Budyko|first=M.I.|journal=Tellus|issue=5|doi=10.3402/tellusa.v21i5.10109|year=1969|volume=21|pages=611–9|bibcode=1969Tell...21..611B}}</ref>研究结论总结为“海冰损失通过地表反照率反馈影响北极温度”。 <ref>{{Cite journal|title=Atmospheric impacts of sea ice decline in CO2 induced global warming|author=Cvijanovic, Ivana|url=https://link.springer.com/content/pdf/10.1007%2Fs00382-015-2489-1.pdf|last=|first=|last2=Caldeira|first2=Ken|journal=Climate Dynamics|issue=5–6|doi=10.1007/s00382-015-2489-1|year=2015|volume=44|pages=1173–86|bibcode=2015ClDy...44.1173C|access-date=2022-02-23|archive-date=2018-10-30|archive-url=https://web.archive.org/web/20181030103940/https://link.springer.com/content/pdf/10.1007%2Fs00382-015-2489-1.pdf}}</ref> <ref>{{Cite web|title=Ice in Action: Sea ice at the North Pole has something to say about climate change|url=http://www.yalescientific.org/2016/06/ice-in-action-sea-ice-at-the-north-pole-has-something-to-say-about-climate-change|year=2016|work=YaleScientific|access-date=2022-02-23|archive-date=2021-11-27|archive-url=https://web.archive.org/web/20211127062210/https://www.yalescientific.org/2016/06/ice-in-action-sea-ice-at-the-north-pole-has-something-to-say-about-climate-change/}}</ref>同年, William D. Sellers发表了类似的模型。 <ref>{{Cite journal|title=A Global Climatic Model Based on the Energy Balance of the Earth-Atmosphere System|author=William D. Sellers|last=|first=|journal=Journal of Applied Meteorology|issue=3|doi=10.1175/1520-0450(1969)008<0392:AGCMBO>2.0.CO;2|year=1969|volume=8|pages=392–400|bibcode=1969JApMe...8..392S}}</ref>这两项研究都引起了极大的关注,因为它们暗示了全球气候系统内可能出现失控的正反馈效应。 <ref>{{Cite journal|title=Mikhail Budyko's (1920–2001) contributions to Global Climate Science: from heat balances to climate change and global ecology|author=Jonathan D. Oldfield|last=|first=|journal=Advanced Review|issue=5|doi=10.1002/wcc.412|year=2016|volume=7|pages=682–692}}</ref> 1975 年,Manabe 和 Wetherald 发表了第一个有可信度的大气环流模型,该模型研究了[[温室气体]]增加的影响。尽管该模型仅限于全球不到三分之一的地区,设置了“沼泽式的”海洋,并且只有高纬度地区存在陆地表面,但它也显示出北极的变暖速度比热带地区更快(所有后续模型都是如此)。 <ref>{{Cite journal|title=The Effects of Doubling the CO2 Concentration on the Climate of a General Circulation Model|author=Syukoro Manabe|last=|first=|last2=Wetherald|first2=Richard T.|date=1975|journal=Journal of the Atmospheric Sciences|issue=1|doi=10.1175/1520-0469(1975)032<0003:TEODTC>2.0.CO;2|volume=32|pages=3–15|bibcode=1975JAtS...32....3M}}</ref> == 放大效应 == === 放大效应机制 === 与海冰和积雪相关的反馈作用被广泛认为是近期陆地极地放大效应的主要原因之一。 <ref>{{Cite journal|title=Radiative forcing and climate response|author=Hansen J., Sato M., Ruedy R.|last=|journal=Journal of Geophysical Research: Atmospheres|issue=D6|doi=10.1029/96jd03436|year=1997|volume=102|pages=6831–64|bibcode=1997JGR...102.6831H}}</ref> <ref name="IPCC 2013">{{Cite journal|title=IPCC AR5 – Near-term Climate Change: Projections and Predictability (Chapter 11 / page 983 )|url=http://www.climatechange2013.org/images/report/WG1AR5_Chapter11_FINAL.pdf|year=2013|journal=|access-date=2022-02-23|archive-date=2019-12-20|archive-url=https://web.archive.org/web/20191220024626/http://www.climatechange2013.org/images/report/WG1AR5_Chapter11_FINAL.pdf}}</ref> <ref>{{Cite journal|title=Radiative Heating of an Ice-Free Arctic Ocean|url=https://escholarship.org/uc/item/678849wc|last=Pistone|first=Kristina|last2=Eisenman|first2=Ian|authorlink2=Ian Eisenman|date=2019|journal=Geophysical Research Letters|issue=13|doi=10.1029/2019GL082914|volume=46|pages=7474–7480|language=en|bibcode=2019GeoRL..46.7474P|last3=Ramanathan|first3=Veerabhadran|authorlink3=Veerabhadran Ramanathan|access-date=2022-02-23|archive-date=2022-01-02|archive-url=https://web.archive.org/web/20220102210858/https://escholarship.org/uc/item/678849wc}}</ref>这些反馈在局部极地放大效应中特别值得注意, <ref name=":3">{{Cite journal|title=Role of Polar Amplification in Long-Term Surface Air Temperature Variations and Modern Arctic Warming|author=Roman V. Bekryaev|last=|first=|last2=Polyakov|first2=Igor V.|date=2010-07-15|journal=Journal of Climate|issue=14|doi=10.1175/2010JCLI3297.1|volume=23|pages=3888–3906|language=EN|bibcode=2010JCli...23.3888B|issn=0894-8755|last3=Alexeev|first3=Vladimir A.}}</ref>尽管最近的工作表明,递减率反馈可能与北极放大效应的冰反照率反馈同样重要。 <ref name="Goosse2018">{{Cite journal|title=Quantifying climate feedbacks in polar regions|author=Hugues Goosse|last=|first=|last2=Kay|first2=Jennifer E.|date=December 2018|journal=Nature Communications|issue=1|doi=10.1038/s41467-018-04173-0|volume=9|pages=1919|bibcode=2018NatCo...9.1919G|pmc=5953926|pmid=29765038|last3=Armour|first3=Kyle C.|last4=Bodas-Salcedo|first4=Alejandro|last5=Chepfer|first5=Helene|last6=Docquier|first6=David|last7=Jonko|first7=Alexandra|last8=Kushner|first8=Paul J.|last9=Lecomte|first9=Olivier}}</ref>支持这一想法的依据是,在没有冰雪的模型中也观察到了大规模的放大效应。 <ref name="Alexeev">{{Cite journal|title=Polar amplification of surface warming on an aquaplanet in "ghost forcing" experiments without sea ice feedbacks|last=Alexeev V. A., Langen P. L., Bates J. R.|journal=Climate Dynamics|issue=7–8|doi=10.1007/s00382-005-0018-3|year=2005|volume=24|pages=655–666|bibcode=2005ClDy...24..655A}}</ref>它似乎既源于(可能是短暂的)极地热传输的加剧,也更直接源于当地净辐射平衡的变化。 <ref name="Alexeev" />局部辐射平衡至关重要,因为[[地球長波輻射|出射长波辐射]]的整体减少将导致两极附近净辐射的相对增加大于赤道附近净辐射的增加。 <ref name="Goosse2018" />因此,在递减率反馈和局部辐射平衡的变化之间,极地放大效应可将主要原因归于[[地球長波輻射|出射长波辐射]]的变化。 <ref name=":3" /> <ref>{{Cite journal|title=Conceptual model analysis of the influence of temperature feedbacks on polar amplification|author=Ashley E. Payne|last=|first=|last2=Jansen|first2=Malte F.|date=2015|journal=Geophysical Research Letters|issue=21|doi=10.1002/2015GL065889|volume=42|pages=9561–9570|language=en|bibcode=2015GeoRL..42.9561P|issn=1944-8007|last3=Cronin|first3=Timothy W.}}</ref>对于北极来说极地放大效应尤其明显,而南极洲的高地地形限制了递减率反馈的影响。 <ref name="Goosse2018" /> <ref>{{Cite journal|title=Antarctic Elevation Drives Hemispheric Asymmetry in Polar Lapse Rate Climatology and Feedback|url=http://eartharxiv.org/6fbjk/|last=Hahn|first=L. C.|last2=Armour|first2=K. C.|date=28 August 2020|journal=Geophysical Research Letters|issue=16|doi=10.1029/2020GL088965|volume=47|bibcode=2020GeoRL..4788965H|last3=Battisti|first3=D. S.|last4=Donohoe|first4=A.|last5=Pauling|first5=A. G.|last6=Bitz|first6=C. M.}}{{Dead link}}</ref> 气候系统反馈的一些例子被认为推动了近年来的极地放大效应,包括积雪和海冰的减少、大气和海洋环流的变化、[[北极地区|北极]]环境中人为烟尘的存在以及云量和水汽的增加。 <ref name="IPCC 2013"/> CO<sub>2</sub>的辐射强迫也可以归因于极性放大。 <ref name=":2">{{Cite journal|title=Polar amplification dominated by local forcing and feedbacks|url=https://www.nature.com/articles/s41558-018-0339-y|last=Stuecker|first=Malte F.|last2=Bitz|first2=Cecilia M.|date=December 2018|journal=Nature Climate Change|issue=12|doi=10.1038/s41558-018-0339-y|volume=8|pages=1076–1081|language=en|bibcode=2018NatCC...8.1076S|issn=1758-6798|last3=Armour|first3=Kyle C.|last4=Proistosescu|first4=Cristian|last5=Kang|first5=Sarah M.|last6=Xie|first6=Shang-Ping|last7=Kim|first7=Doyeon|last8=McGregor|first8=Shayne|last9=Zhang|first9=Wenjun|access-date=2022-02-23|archive-date=2022-06-17|archive-url=https://web.archive.org/web/20220617083435/https://www.nature.com/articles/s41558-018-0339-y}}</ref>大多数研究将海冰变化与极地放大效应联系起来。 <ref name="IPCC 2013" />冰的范围和厚度都会影响极地放大效应。具有较小基线海冰范围和较薄海冰覆盖范围的气候模型表现出较强的极地放大。 <ref name=":1">{{Cite journal|title=Polar amplification of climate change in coupled models|url=https://doi.org/10.1007/s00382-003-0332-6|last=Holland|first=M. M.|last2=Bitz|first2=C. M.|date=2003-09-01|journal=Climate Dynamics|issue=3|doi=10.1007/s00382-003-0332-6|volume=21|pages=221–232|language=en|bibcode=2003ClDy...21..221H|issn=1432-0894}}</ref>一些冰雪覆盖率没有变化的现代气候模型仍表现出北极放大效应。 <ref>{{Cite journal|title=Arctic amplification dominated by temperature feedbacks in contemporary climate models|last=Pithan|first=Felix|last2=Mauritsen|first2=Thorsten|date=February 2, 2014|journal=Nature Geoscience|issue=3|doi=10.1038/ngeo2071|volume=7|pages=181–4|bibcode=2014NatGe...7..181P}}</ref> 导致极地变暖的各个过程对于了解气候敏感性至关重要。 <ref>{{Cite journal|title=A Decomposition of Feedback Contributions to Polar Warming Amplification|last=Taylor, Patrick C., Ming Cai, Aixue Hu, Jerry Meehl, Warren Washington, Guang J. Zhang|date=September 23, 2013|journal=Journal of Climate|issue=18|doi=10.1175/JCLI-D-12-00696.1|volume=23|pages=7023–43|bibcode=2013JCli...26.7023T}}</ref>极地变暖还影响了许多生态系统,包括海洋和陆地生态系统、气候系统和人口。 <ref name=":2"/>极地放大效应的这些影响促进了面对全球变暖的持续研究。 === 海洋环流 === 据估计,全球 70% 的风能被转移到海洋并在[[南極繞極流|南极绕极流]](ACC) 内产生。 <ref name=":0" />最终,由于风应力导致的[[上升流]]将寒冷的南极海水通过大西洋[[洋流|表面洋流]]进行输送,让它们在赤道上空变暖,此后进入北极区域。这在高纬度地区尤其明显。 <ref name=":1"/>因此,北极变暖取决于全球海洋运输的效率,并在极地跷跷板效应中发挥作用。 <ref name=":0">{{Cite journal|title=Twentieth century bipolar seesaw of the Arctic and Antarctic surface air temperatures|url=http://www.leif.org/EOS/2010GL042793.pdf|last=Petr Chylek, Chris K. Folland, Glen Lesins, and Manvendra K. Dubey|date=February 3, 2010|journal=Geophysical Research Letters|accessdate=May 1, 2014|issue=8|doi=10.1029/2010GL042793|volume=12|pages=4015–22|bibcode=2010GeoRL..37.8703C|archiveurl=https://web.archive.org/web/20140220051308/http://www.leif.org/EOS/2010GL042793.pdf|archivedate=February 20, 2014}}</ref> [[厄尔尼诺-南方振荡现象|拉尼娜现象]]期间氧气减少和 pH 值低是与初级生产减少和更明显的极向洋流相关联的过程。 <ref>{{Cite journal|title=Amplification of hypoxic and acidic events by La Niña conditions on the continental shelf off California|author=Sung Hyun Nam, Hey-Jin Kim and Uwe Send|last=|date=November 23, 2011|journal=Geophysical Research Letters|issue=22|doi=10.1029/2011GL049549|volume=83|pages=L22602|bibcode=2011GeoRL..3822602N}}</ref>有人提出,ENSO拉尼娜期间北极地表气温异常增加的机制可能归因于热带激发的北极变暖机制(TEAM),当时[[罗斯贝波|罗斯比波]]向极地传播更多,导致波动力学和向下的红外辐射增加。 <ref name="Polar amplification"/> <ref>{{Cite journal|title=Testing of the Tropically Excited Arctic Warming Mechanism (TEAM) with Traditional El Niño and La Niña|last=Sukyoung Lee|date=June 2012|journal=Journal of Climate|issue=12|doi=10.1175/JCLI-D-12-00055.1|volume=25|pages=4015–22|bibcode=2012JCli...25.4015L}}</ref> === 放大系数 === 极地放大效应是根据'''极性放大系数'''量化的,通常定义为极地温度的一些变化与更广泛的平均温度的相应变化的比率: : <math>{ PAF }={\Delta{T}_{p}\over\Delta\overline{T}}</math>{{Spaces}}{{Spaces}}, <math>\Delta{T}_{p}</math>是极地温度的变化,<math>\Delta\overline{T}</math>{{Spaces}}{{Spaces}}是全球平均温度的相应变化。 常见应用<ref>{{Cite journal|title=''Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints''|last=Masson-Delmotte, V., M. Kageyama, P. Braconnot, S. Charbit, G. Krinner, C. Ritz, E. Guilyardi|date=2006|journal=Climate Dynamics|doi=10.1007/s00382-005-0081-9|volume=26|pages=513–529|bibcode=2006ClDy...26..513M|display-authors=etal|number=5}}</ref> <ref name="Hansen">{{Cite journal|title=''Climate sensitivity, sea level and atmospheric carbon dioxide''|url=http://m.rsta.royalsocietypublishing.org/content/371/2001/20120294.full|last=James Hansen, Makiko Sato, Gary Russell and Pushker Kharecha|date=September 2013|journal=Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences|issue=2001|doi=10.1098/rsta.2012.0294|volume=371|pages=20120294|arxiv=1211.4846|bibcode=2013RSPTA.37120294H|pmc=3785813|pmid=24043864|archiveurl=https://archive.today/20130917214919/http://m.rsta.royalsocietypublishing.org/content/371/2001/20120294.full|archivedate=2013-09-17}}</ref>将温度变化直接定义为相对于最近的参考区间(通常为 30 年)的地表气温异常。其他研究则使用了较长时间间隔内地表气温变化的比率。 <ref>{{Cite journal|title=''On the origin of multidecadal to centennial Greenland temperature anomalies over the past 800 yr''|author=Kobashi, T., Shindell, D. T., Kodera, K., Box, J. E., Nakaegawa, T., & Kawamura, K.|last=|date=2013|journal=Climate of the Past|issue=2|doi=10.5194/cp-9-583-2013|volume=9|pages=583–596|bibcode=2013CliPa...9..583K}}</ref> === 放大阶段 === [[File:AntarcticaTemps3_1957-2006.png|缩略图|[[西部南极洲|西南极洲]](左)的温度趋势已大大超过全球平均水平;[[东部南极洲|东南极洲]]则不那么明显。]] 根据观测,由于[[米蘭科維奇循環|轨道辐射强迫效应]],北极和南极变暖通常会异相进行,从而导致所谓的极地跷跷板效应。 <ref>{{Cite journal|title=Mid-latitude interhemispheric hydrologic seesaw over the past 550,000 years|last=Kyoung-nam Jo, Kyung Sik Woo, Sangheon Yi, Dong Yoon Yang, Hyoun Soo Lim, Yongjin Wang, Hai Cheng & R. Lawrence Edwards|date=March 30, 2014|journal=Nature|issue=7496|doi=10.1038/nature13076|volume=508|pages=378–382|bibcode=2014Natur.508..378J|pmid=24695222}}</ref> == 古气候极地放大效应 == [[更新世]]的冰期/[[間冰期|间冰期]]循环为北极和南极的极地放大效应提供了大量[[古氣候學|古气候]]证据。 <ref name="Hansen"/>自20,000年前[[末次冰盛期|末次盛冰期]]以来的温度上升就是一个典型证据。来自北极([[格陵兰]])和南极的推测温度记录表明,极地放大系数大致为 2.0。 <ref name="Hansen" /> == 近年的北极放大效应 == [[File:NORTH_POLE_Ice_(19626661335).jpg|缩略图|较暗的海洋表面仅反射 6% 的入射太阳辐射,而海冰可以反射 50% 到 70%之多。 <ref>{{Cite web|title=Thermodynamics: Albedo|url=https://nsidc.org/cryosphere/seaice/processes/albedo.html|work=NSIDC|access-date=2022-02-23|archive-date=2020-06-12|archive-url=https://web.archive.org/web/20200612124239/https://nsidc.org/cryosphere/seaice/processes/albedo.html}}</ref>]] 导致观测到的北极放大效应的机制包括北极海冰减少(开阔水域反射的阳光比海冰少)、从赤道到北极的大气热量传输、 <ref>{{Cite web|title=Arctic amplification|url=https://climate.nasa.gov/news/927/arctic-amplification|year=2013|work=NASA|access-date=2022-02-23|archive-date=2018-07-31|archive-url=https://web.archive.org/web/20180731054007/https://climate.nasa.gov/news/927/arctic-amplification/}}</ref>和递减率反馈。 <ref name="Goosse2018"/> 詹妮弗·弗朗西斯在 2017 年接受《科学美国人》杂志采访称,“由于[[高速氣流|急流]]的剧烈波动,更多的水蒸气正向北输送。这很重要,因为[[温室气体|水蒸气和二氧化碳和甲烷一样是温室气体]]。水汽在大气中捕获热量,也会凝结成我们称之为云的液滴,它们本身会吸收更多的热量。水蒸气是放大效应的重要组成部分——这是北极变暖速度比其他任何地方都快的一个重要原因。” <ref>{{Cite web|title=The Arctic Is Getting Crazy|url=https://www.scientificamerican.com/article/the-arctic-is-getting-crazy/|author=Fischetti|first=Mark|year=2017|work=Scientific American|access-date=2022-02-23|archive-date=2022-04-22|archive-url=https://web.archive.org/web/20220422105448/https://www.scientificamerican.com/article/the-arctic-is-getting-crazy/}}</ref> 一些研究将北极爆发性升温(从而导致[[冰雪圈|冰冻圈]]消失)与中纬度地区的[[極端天氣|极端天气]]联系起来。 <ref name="Francis12" /> <ref>{{Cite journal|title=A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents|author=Petoukhov Vladimir|url=http://oceanrep.geomar.de/8738/1/2009JD013568-pip.pdf|last=|first=|last2=Semenov|first2=Vladimir A.|date=November 2010|journal=Journal of Geophysical Research: Atmospheres|issue=21|doi=10.1029/2009JD013568|volume=115|pages=D21111|bibcode=2010JGRD..11521111P|access-date=2022-02-23|archive-date=2017-08-09|archive-url=https://web.archive.org/web/20170809050422/http://oceanrep.geomar.de/8738/1/2009JD013568-pip.pdf}}</ref> <ref name="Screen 2013">{{Cite journal|title=Influence of Arctic sea ice on European summer precipitation|author=J A Screen|last=|first=|date=November 2013|journal=Environmental Research Letters|issue=4|doi=10.1088/1748-9326/8/4/044015|volume=8|pages=044015|bibcode=2013ERL.....8d4015S}}</ref> <ref>{{Cite journal|title=Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere|last=Qiuhong Tang|last2=Xuejun Zhang|date=December 2013|journal=Nature Climate Change|issue=1|doi=10.1038/nclimate2065|volume=4|pages=45–50|bibcode=2014NatCC...4...45T|last3=Francis|first3=J. A.|authorlink3=Jennifer A. Francis}}</ref>也有研究不支持海冰损失与中纬度极端事件之间的联系。 <ref>{{Cite journal|title=Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes|last=Blackport|first=Russell|last2=Screen|first2=James A.|date=September 2019|journal=Nature Climate Change|issue=9|doi=10.1038/s41558-019-0551-4|volume=9|pages=697–704|bibcode=2019NatCC...9..697B|last3=van der Wiel|first3=Karin|last4=Bintanja|first4=Richard}}</ref> <ref>{{Cite journal|title=Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves|author=Russell Blackport|last=|first=|last2=Screen|first2=James A.|date=February 2020|journal=Science Advances|issue=8|doi=10.1126/sciadv.aay2880|volume=6|pages=eaay2880|bibcode=2020SciA....6.2880B|pmc=7030927|pmid=32128402}}</ref>其中,一个假说认为,通过改变[[高速氣流|极地急流]]将极地放大效应与极端天气联系起来。 <ref name="Francis12">{{Cite journal|title=Evidence linking Arctic amplification to extreme weather in mid-latitudes|author=J. A. Francis|last=|first=|last2=Vavrus|first2=S. J.|journal=Geophysical Research Letters|issue=6|doi=10.1029/2012GL051000|year=2012|volume=39|pages=L06801|bibcode=2012GeoRL..39.6801F}}</ref>然而,2013 年的一项研究指出,与海冰和积雪减少有关的极端事件的观测时间还不够长,无法将自然的气候变率与近期气候变化相关的影响完全区分开来。 <ref>{{Cite journal|title=Atmospheric science: Long-range linkage|last=James E. Overland|date=December 8, 2013|journal=Nature Climate Change|issue=1|doi=10.1038/nclimate2079|volume=4|pages=11–12|bibcode=2014NatCC...4...11O}}</ref>关于海冰减少导致的极地放大效应与纬度极值之间的关系仍然存在争议。 2017 年和 2018 年发表的研究表明,北半球急流中[[罗斯贝波|罗斯比波]]的驻留模式导致了长期的极端天气事件,例如2018 年欧洲热浪、 [[2003年欧洲热浪|2003]]年欧洲热浪、 [[2010年俄罗斯森林大火|2010 年俄罗斯热浪]]、 [[2010年巴基斯坦洪災|2010 年巴基斯坦洪水]]等等。这些事件常常在研究中与[[全球变暖]]、北极爆发性升温等效应联系起来。 <ref>{{Cite journal|title=Influence of Anthropogenic Climate Change on Planetary Wave Resonance and Extreme Weather Events|last=Mann|first=Michael E.|last2=Rahmstorf|first2=Stefan|date=27 March 2017|journal=Scientific Reports|doi=10.1038/srep45242|volume=7|pages=45242|bibcode=2017NatSR...745242M|pmc=5366916|pmid=28345645}}</ref> <ref>{{Cite web|title=Extreme global weather is 'the face of climate change' says leading scientist|url=https://www.theguardian.com/environment/2018/jul/27/extreme-global-weather-climate-change-michael-mann|year=2018|work=The Guardian|access-date=2022-02-23|archive-date=2019-04-13|archive-url=https://web.archive.org/web/20190413154627/https://www.theguardian.com/environment/2018/jul/27/extreme-global-weather-climate-change-michael-mann}}</ref> 2009 年的一项研究表明,大西洋多年代际振荡(AMO) 与北极温度的变化高度相关,这表明[[溫鹽環流|大西洋温盐环流]]与北极在多年代际时间尺度上的温度变化有关。 <ref>{{Cite journal|title=Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation|author=Petr Chylek|last=|first=|last2=Folland|first2=Chris K.|date=16 July 2009|journal=Geophysical Research Letters|issue=14|doi=10.1029/2009GL038777|volume=36|pages=L14801|bibcode=|last3=Lesins|first3=Glen|last4=Dubey|first4=Manvendra K.|last5=Wang|first5=Muyin}}</ref> 2014 年的一项研究得出结论,北极放大效应显著降低了近几十年来北半球寒冷季节的气温变化。来自北极的寒流如今可以在秋冬季节更迅速地侵入较温暖的低纬度地区,预计这种趋势将在未来除了夏季之外继续存在,这令人担忧冬季是否会出现更多的严寒事件。 <ref>{{Cite journal|title=Arctic amplification decreases temperature variance in northern mid- to high-latitudes|url=https://www.sciencedaily.com/releases/2014/06/140615143834.htm|last=Screen|first=James A.|date=15 June 2014|journal=Nature Climate Change|issue=7|doi=10.1038/nclimate2268|volume=4|pages=577–582|bibcode=2014NatCC...4..577S|access-date=2022-02-23|archive-date=2022-02-23|archive-url=https://web.archive.org/web/20220223230945/https://www.sciencedaily.com/releases/2014/06/140615143834.htm}}</ref>据 2015 年的一项研究显示,基于大气中气溶胶的计算机模型,1980 年至 2005 年间北极地区观测到的高达 0.5 摄氏度的升温是欧洲的气溶胶减少所致。 <ref>{{Cite news|url=https://www.washingtonpost.com/news/energy-environment/wp/2016/03/14/how-cleaner-air-could-actually-make-global-warming-worse|title=How cleaner air could actually make global warming worse|date=14 March 2016|work=Washington Post|author=Harvey|first=C.|accessdate=2022-02-23|archive-date=2020-01-21|archive-url=https://web.archive.org/web/20200121135215/https://www.washingtonpost.com/news/energy-environment/wp/2016/03/14/how-cleaner-air-could-actually-make-global-warming-worse/}}</ref> <ref>{{Cite journal|title=Amplification of Arctic warming by past air pollution reductions in Europe|last=Acosta Navarro|first=J.C.|last2=Varma|first2=V.|journal=Nature Geoscience|issue=4|doi=10.1038/ngeo2673|year=2016|volume=9|pages=277–281|bibcode=2016NatGe...9..277A|last3=Riipinen|first3=I.|last4=Seland|first4=Ø.|last5=Kirkevåg|first5=A.|last6=Struthers|first6=H.|last7=Iversen|first7=T.|last8=Hansson|first8=H.-C.|last9=Ekman|first9=A.M.L.}}</ref> == 参见 == * 北极偶极子异常 * [[北極振盪|北极振荡]] * [[北极气候]] * [[高速氣流|急流]] * [[极地涡旋]] * 平流层爆发性增温 == 参考文献 == [[Category:北極]] [[Category:南极洲环境]] [[Category:北極環境]] [[Category:气候变化]] [[Category:北冰洋]] <references /> == 外部链接 == * {{Cite web|title=Why is the Arctic warming faster than other parts of the world? Scientists explain|url=https://www.weforum.org/agenda/2021/06/climate-arctic-glacial-melt-rate|author=Turton|date=3 June 2021|first=Steve|work=WEForum.org|publisher=World Economic Forum|archive-url=https://web.archive.org/web/20210603125701/https://www.weforum.org/agenda/2021/06/climate-arctic-glacial-melt-rate/|archive-date=3 June 2021}}
该页面使用的模板:
Template:Cite book
(
查看源代码
)
Template:Cite journal
(
查看源代码
)
Template:Cite news
(
查看源代码
)
Template:Cite web
(
查看源代码
)
Template:Dead link
(
查看源代码
)
Template:Spaces
(
查看源代码
)
返回
极地放大效应
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息