查看“︁描述函數”︁的源代码
←
描述函數
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
'''描述函數'''(describing function)是[[控制系統]]中用近似方式處理[[非線性系統]]的方法,由{{link-en|Nikolay Mitrofanovich Krylov|Nikolay Mitrofanovich Krylov}}及[[尼古拉·尼古拉耶维奇·博戈柳博夫|尼古拉·博戈柳博夫]]在1930年代提出<ref name="Krylov">{{cite book | last = Krylov | first = N. M. | author2 = N. Bogoliubov | title = Introduction to Nonlinear Mechanics | publisher = Princeton Univ. Press | year = 1943 | location = Princeton, US | pages = | url = http://libra.msra.cn/Publication/3271320/introduction-to-nonlinear-mechanics | doi = | id = | isbn = 0691079854 | access-date = 2019-05-02 | archive-date = 2013-06-20 | archive-url = https://archive.today/20130620041142/http://libra.msra.cn/Publication/3271320/introduction-to-nonlinear-mechanics | dead-url = yes }}</ref><ref name="Blaquiere">{{cite book | last = Blaquiere | first = Austin | title = Nonlinear System Analysis | publisher = Elsevier Science | location = | pages = 177 | url = https://books.google.com/books?id=LC2_lK9HZQgC&pg=PA177&dq=krylov+bogoliubov | doi = | id = | isbn = 0323151663}}</ref>,後來由Ralph Kochenburger延伸<ref name="Kochenburger">{{cite journal | last = Kochenburger | first = Ralph J. | title = A Frequency Response Method for Analyzing and Synthesizing Contactor Servomechanisms | journal = Trans. AIEE | volume = 69 | issue = 1 | pages = 270–284 | publisher = American Institute of Electrical Engineers | location = | date = January 1950 | url = http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=5060149&contentType=Journals+%26+Magazines | issn = | doi = 10.1109/t-aiee.1950.5060149 | id = | accessdate = June 18, 2013 | archive-date = 2016-03-04 | archive-url = https://web.archive.org/web/20160304195729/http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=5060149&contentType=Journals+%26+Magazines | dead-url = no }}</ref>。描述函數是以準線性為基礎,是用會依輸入波形[[振幅]]而變化的[[线性时不变系统理论|线性时不变]][[传递函数]]來近似非線性系統的作法。依照定義,真正线性时不变系統的传递函数不會隨輸入函數的振幅而變化(因為是[[線性系統]])。因此,其和振幅的相依性就會產生一群的線性系統,這些系統結合起來的目的是為了近似非線性系統的特性。描述函數是少數廣為應用來設計非線性系統的方法,描述函數是在分析閉迴路控制器(例如工業過程控制、伺服機構、[[电子振荡器]])的[[极限环]]時,常見的數學工具。 ==原理== 考慮一個慢速,穩定的線性系統,其回授路徑中有不連續(但有分段連續)的非線性特性(例如有飽和的放大器、或是有[[死區]]效應的元件)。在非線性元件上看到的連續區域會視線性系統的振幅而定。若線性系統輸出的振幅變小,其非線性元件的特性可能又會變換到另一個區域。這種在二個連續區間之間的切換會造成週期性的[[振荡]]。描述函數方式法目的是要預設這些振盪的特性(也就是其基頻),作法是假設慢速系統特性類似[[低通滤波器]]或[[带通滤波器]],會將能量集中在單一頻率。即使輸出波形有多個不同的模態,描述函數仍可以提供有關頻率的資訊,也許也包括振幅相關的資訊。此情形下,描述函數有點類似在描述回授系統的[[滑動模式控制|滑動模式]]。 [[File:Function-block-harmonic-balance.png|thumb|center|600px|在諧波平衡下的非線性系統]] 利用低通濾波器的假設,系統響應可以表示為一組[[正弦曲線]]中的一個弦波。此情形下,系統可以表示為弦波描述函數(SIDF)<math>H(A,\,j\omega)</math>,是對振幅為A,頻率為<math>\omega</math>的弦波輸入的系統響應。SIDF是描述線性函數[[传递函数]] <math>H(j\omega)</math>的變體。在準線性系統中,輸入信號為弦波時,其輸出也是相同頻率的弦波,但其振幅及相位的關係可以用<math>H(A,\,j\omega)</math>表示。以此觀點來看,許多系統在弦波輸入下的響應雖不一定是純弦波,但大部份輸出能量集中在是和輸入信號相同的頻率<math>\omega</math>,因此可以近似為準線性系統。其原因是這類系統在其本質上有[[低通滤波器|低通]]或是[[带通滤波器|带通]]的特性,因此高次的諧波受到了抑制,也有可能是特意加入了{{link-en|濾波 (信號處理)|filter (signal processing)|濾波器}}。弦波描述函數(SIDF)的重要用途之一是消除弦波[[电子振荡器]]的非理想訊號。 考慮非線性系統<math>u = f(xd).</math>,在弦波輸入<math>xd=Asin \omega t</math>下,其描述函數可以表示為<math>H(A,\,j\omega)=g+jb,</math>,其中的實部g及虛部b可以表示如下: : <math>g(A,\,j\omega)= \frac{1}{\pi A} \int_0^{2\pi} f(A \sin \omega t) \sin \omega t d \omega t</math> : <math>b(A,\,j\omega)= \frac{1}{\pi A} \int_0^{2\pi} f(A \sin \omega t) \cos \omega t d \omega t</math> 也有其他型式的描述函數,例如水平輸入以及高斯雜訊輸入的描述函數。描述函數無法完整的描述系統,不過多半已可以處理像是控制或是穩定性的問題。描述函數最適用於分析非線性程度相對輕微的系統。此外,[[高階弦波輸入描述函數]](HOSIDF)描述非線性系統在弦波輸入下,其各階諧波成份的振幅及相位。高階弦波輸入描述函數是描述函數是延伸版本,用在響應的非線性程度非常明顯的場合。 ==注意事項== 在許多種類的系統中,描述函數都可以產生一定準確度的結果,不過也有些情形會失效。例如在一些很強調其高階諧波特性的系統,描述函數就不一定能發揮作用。Tzypkin曾經用[[起停式控制]]系統為例說明過<ref>{{cite book|last=Tsypkin|first=Yakov Z.|title=Relay Control Systems|publisher=Cambridge: Univ Press|year=1984}}</ref>。另一個比較簡單的例子是由非反相[[施密特触发器]]加上反相[[積分器]]組成的閉迴路振盪器,以積分器的輸出為施密特触发器的輸入。施密特触发器的輸出是方波,而積分器的輸出是[[三角波]],的三角波的波峰恰好就是方波的切換點。振盪器中的這兩部份輸出都落後輸入90度。若是用描述函數來處此一電路,施密特触发器的輸入會變成頻率為其基頻的弦波,通過触发器也會有延遲,但會比90度要小(弦波觸發触发器的時機會比三角波要快),因此描述函數下,系統振盪的方式會和原系統的不同<ref name="LurieEnright2000">{{cite book|author1=Boris Lurie|author2=Paul Enright|title=Classical Feedback Control: With MATLAB|url=https://archive.org/details/classicalfeedbac0000luri|year=2000|publisher=CRC Press|isbn=978-0-8247-0370-7|pages=[https://archive.org/details/classicalfeedbac0000luri/page/298 298]–299}}</ref>。 若是符合[[阿依熱爾曼猜想]]或[[卡爾曼猜想]]的條件,可能利用描述函數找不到週期解<ref>{{cite journal | author1 = Leonov G.A. | author2 = Kuznetsov N.V. | year = 2011 | title = Algorithms for Searching for Hidden Oscillations in the Aizerman and Kalman Problems | journal = Doklady Mathematics | volume = 84 | number = 1 | url = http://www.math.spbu.ru/user/nk/PDF/2011-DAN-Absolute-stability-Aizerman-problem-Kalman-conjecture.pdf | pages = 475–481 | doi = 10.1134/S1064562411040120 | access-date = 2019-05-02 | archive-date = 2016-03-04 | archive-url = https://web.archive.org/web/20160304053548/http://www.math.spbu.ru/user/nk/PDF/2011-DAN-Absolute-stability-Aizerman-problem-Kalman-conjecture.pdf | dead-url = no }},</ref><ref>{{cite web |url=http://www.math.spbu.ru/user/nk/PDF/Harmonic_balance_Absolute_stability.pdf |title=Aizerman's and Kalman's conjectures and describing function method |access-date=2019-05-02 |archive-date=2016-03-04 |archive-url=https://web.archive.org/web/20160304112151/http://www.math.spbu.ru/user/nk/PDF/Harmonic_balance_Absolute_stability.pdf |dead-url=no }}</ref>,相反的,也有週期解的反例([[隱藏振盪]])。因此描述函數的應用也需要確認是否適合<ref>{{cite journal | author1 = Bragin V.O. | author2 = Vagaitsev V.I. | author3 = Kuznetsov N.V. | author4 = Leonov G.A. | year = 2011 | title = Algorithms for Finding Hidden Oscillations in Nonlinear Systems. The Aizerman and Kalman Conjectures and Chua's Circuits | journal = Journal of Computer and Systems Sciences International | volume = 50 | number = 4 | pages = 511–543 | url = http://www.math.spbu.ru/user/nk/PDF/2011-TiSU-Hidden-oscillations-attractors-Aizerman-Kalman-conjectures.pdf | doi = 10.1134/S106423071104006X | access-date = 2019-05-02 | archive-date = 2016-03-04 | archive-url = https://web.archive.org/web/20160304045017/http://www.math.spbu.ru/user/nk/PDF/2011-TiSU-Hidden-oscillations-attractors-Aizerman-Kalman-conjectures.pdf | dead-url = no }}</ref><ref name=2011-IJBC-Hidden-attractors>{{cite journal | author1 = Leonov G.A. | author2 = Kuznetsov N.V. | year = 2013 | title = Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits | journal = International Journal of Bifurcation and Chaos | volume = 23 | issue = 1 | pages = art. no. 1330002 | url = http://www.worldscientific.com/doi/pdf/10.1142/S0218127413300024 | doi = 10.1142/S0218127413300024 | access-date = 2019-05-02 | archive-date = 2019-03-24 | archive-url = https://web.archive.org/web/20190324122428/https://www.worldscientific.com/doi/pdf/10.1142/S0218127413300024 | dead-url = no }}</ref>。 ==參考資料== {{Reflist|2}} ==延伸閱讀== {{refbegin}} * N. Krylov and N. Bogolyubov: ''Introduction to Nonlinear Mechanics'', Princeton University Press, 1947 * A. Gelb and W. E. Vander Velde: [http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-30-estimation-and-control-of-aerospace-systems-spring-2004/readings/#Downloadable ''Multiple-Input Describing Functions and Nonlinear System Design''] {{Wayback|url=http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-30-estimation-and-control-of-aerospace-systems-spring-2004/readings/#Downloadable |date=20200522213557 }}, McGraw Hill, 1968. * James K. Roberge, ''Operational Amplifiers: Theory and Practice,'' [http://ocw.mit.edu/resources/res-6-010-electronic-feedback-systems-spring-2013/textbook/MITRES_6-010S13_chap06.pdf chapter 6: Non-Linear Systems] {{Wayback|url=http://ocw.mit.edu/resources/res-6-010-electronic-feedback-systems-spring-2013/textbook/MITRES_6-010S13_chap06.pdf |date=20190502145854 }}, 1975; free copy courtesy of <!-- [[MIT OpenCourseWare]] -->[[MIT OpenCourseWare]] 6.010 (2013); see also (1985) video recording of Roberge's lecture on [http://ocw.mit.edu/resources/res-6-010-electronic-feedback-systems-spring-2013/course-videos/lecture-15-describing-functions/ describing functions] {{Wayback|url=http://ocw.mit.edu/resources/res-6-010-electronic-feedback-systems-spring-2013/course-videos/lecture-15-describing-functions/ |date=20190502145901 }} * P.W.J.M. Nuij, O.H. Bosgra, M. Steinbuch, Higher Order Sinusoidal Input Describing Functions for the Analysis of Nonlinear Systems with Harmonic Responses, Mechanical Systems and Signal Processing, 20(8), 1883–1904, (2006) {{refend}} ==相關條目== *{{le|諧波平衡法|Harmonic Balance}} == 外部連結== *[http://www.ee.unb.ca/jtaylor/Publications/EEncyc_final.pdf Electrical Engineering Encyclopedia: Describing Functions] {{Wayback|url=http://www.ee.unb.ca/jtaylor/Publications/EEncyc_final.pdf |date=20111003003202 }} {{DEFAULTSORT:Describing Function}} [[Category:非線性控制]]
该页面使用的模板:
Template:Cite book
(
查看源代码
)
Template:Cite journal
(
查看源代码
)
Template:Cite web
(
查看源代码
)
Template:Le
(
查看源代码
)
Template:Link-en
(
查看源代码
)
Template:Refbegin
(
查看源代码
)
Template:Refend
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:Wayback
(
查看源代码
)
返回
描述函數
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息