查看“︁扭棱四面體”︁的源代码
←
扭棱四面體
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{NoteTA|G1=Math}} {{Infobox polyhedron | name =扭棱四面體 | polyhedron = 扭棱四面體 | imagename =Uniform polyhedron-33-s012.svg | Type = 凸多面體 | Face = 20 | Edge = 30 | Vertice = 12 | Face_type = 8個正三角形<br/>12個等腰三角形 | Coxeter_diagram = {{CDD|node_h|3|node_h|4|node}} (五角十二面體對稱) [[File:Uniform polyhedron-43-h01.svg|24px]]<br />{{CDD|node_h|3|node_h|3|node_h}} (四面體對稱) [[File:Uniform polyhedron-33-s012.svg|24px]] | Vertice_type = | Vertice_configuration = | Schläfli = | Wythoff = | Symmetry_group = [[Pyritohedral symmetry|T<sub>h</sub>]], [4,3<sup>+</sup>], (3*2), order 24 | Index_references = | dual = [[五角十二面體]] | Rotation_group = [[Tetrahedral symmetry|T<sub>d</sub>]], [3,3]<sup>+</sup>, (332), order 12 | Properties = 凸 | 3d_image = | vfigimage = | dual_image = Polyhedron_pyritohedron_from_yellow.png | net_image = Pseudoicosahedron_flat.png }} 在[[幾何學]]中,'''扭棱四面體'''是指[[正四面體]]經過[[扭棱]]變換後所形成的多面體。其拓樸結構與[[正二十面體]]等價。一般會將這種立體的面分為3組,一組是原始四面體的面,另一組是來自[[原像 (幾何)|原像]]之[[頂點圖]]的面,另一組是扭棱變換過程中所形成的面。若兩組面構成的三角形不全等,其結果立體將會變成一個外觀與[[正二十面體]]非常相似,但不相同的立體,因此又稱'''偽正二十面體'''<ref name="Baez">{{cite web|url=http://math.ucr.edu/home/baez/golden.html|title=Fool's Gold|author=John Baez|date=September 11, 2011|access-date=2021-08-14|archive-date=2018-05-19|archive-url=https://web.archive.org/web/20180519002756/http://math.ucr.edu/home/baez/golden.html|dead-url=no}}</ref>,其具備五角十二面體(黃鐵礦晶型)對稱性<ref>{{cite web | url = http://www.polytope.net/hedrondude/sym.htm | title=Symmetries Up To Three Dimensions |archive-date=2021-08-14 |archive-url=https://webcache.googleusercontent.com/search?q=cache:http://www.polytope.net/hedrondude/sym.htm}}</ref>。部分文獻將這種立體稱為扭棱八面體(snub octahedron)<ref name="kappraff2001connections">{{cite book |title=Connections: The Geometric Bridge Between Art & Science (2nd Edition) |author=Kappraff, J. |isbn=9789814491327 |series=Series On Knots And Everything |url=https://books.google.com.tw/books?id=YwLVCgAAQBAJ |year=2001 |page=475 |publisher=World Scientific Publishing Company |access-date=2021-08-14 |archive-date=2021-08-14 |archive-url=https://web.archive.org/web/20210814091527/https://books.google.com.tw/books?id=YwLVCgAAQBAJ |dead-url=no }}</ref>、扭棱截半四面體(或扭棱四-四面體,snub tetratetrahedron)<ref name="orchidpalms">{{Cite web | url = http://www.orchidpalms.com/polyhedra/uniform/twisters/twisters.htm | title = Polyhedral "Twisters" | publisher = orchidpalms.com | author = Jim McNeill | access-date = 2021-08-14 | archive-date = 2019-03-11 | archive-url = https://web.archive.org/web/20190311141122/http://www.orchidpalms.com/polyhedra/uniform/twisters/twisters.htm | dead-url = no }}</ref>。部分礦石的晶體結構會結晶成這種形狀。<ref name="Who Discovered the Icosahedron"/> 這個立體是[[五角十二面體]]的[[對偶多面體]]。<ref>{{Cite journal|location=Chester, England|url=https://www2.physics.ox.ac.uk/sites/default/files/CrystalStructure_2Dand3DPointGroups.pdf|title=Crystallographic and noncrystallographic point groups|isbn=9780792365907|publisher=International Union of Crystallography|edition=1|volume=A|series=International Tables for Crystallography|page=pp. 763–795|date=2006-10-01|journal=International Tables for Crystallography: Space-group symmetry|accessdate=2021-08-14|editor=Th. Hahn|doi=10.1107/97809553602060000100|archive-date=2021-08-14|archive-url=https://web.archive.org/web/20210814090000/https://www2.physics.ox.ac.uk/sites/default/files/CrystalStructure_2Dand3DPointGroups.pdf|dead-url=no}}</ref> == 性質 == 扭棱四面體是一種[[二十面體]],由20個三角形組成。扭棱四面體可以視為四面體經過扭棱變換所形成的立體,在扭稜的過程中會形成3種面,一種是原始四面體的面、另一種是來自原像[[頂點圖]]的面、還有一種是扭棱變換過程中所形成的面。若這三種面皆全等,整個立體將與[[正二十面體]]無異。<ref>{{cite journal|journal=The Mathematical Gazette|volume=82|issue=494|language=en|issn=0025-5572|date=1998-07|pages=203–214|doi=10.2307/3620403|url=https://www.cambridge.org/core/product/identifier/S0025557200161765/type/journal_article|title=Have you seen this number?|accessdate=2021-08-16|author=John Sharp}}</ref><ref>{{Cite web|author=George W. Hart|year=1996|title=Symmetry Planes|url=https://www.georgehart.com/virtual-polyhedra/symmetry_planes.html|access-date=2021-08-14|archive-date=2021-08-16|archive-url=https://web.archive.org/web/20210816104228/https://www.georgehart.com/virtual-polyhedra/symmetry_planes.html|dead-url=no}}</ref> {|class=wikitable width=200px |[[File:P1-P5.gif|200px]]<br/>四面體扭棱成扭棱四面體的過程, 其中藍色的面代表原始四面體的面; 紅色的面代表來自原像[[頂點圖]]的面; 白色的面代表扭棱變換過程中所形成的面 |} === 拓樸結構 === 扭棱四面體的拓樸結構與正二十面體等價<ref name="Who Discovered the Icosahedron">{{cite conference | author = John Baez | date = September 11, 2009 | title = Who Discovered the Icosahedron? | conference = Special Session on History and Philosophy of Mathematics, 2009 Fall Western Section Meeting of the AMS | conferenceurl = http://www.ams.org/meetings/sectional/2163_program_ss4.html#title | url = https://math.ucr.edu/home/baez/icosahedron/ | access-date = 2021-08-14 | archive-date = 2020-05-29 | archive-url = https://web.archive.org/web/20200529211429/http://www.math.ucr.edu/home/baez/icosahedron/ | dead-url = no }}</ref>。若將四面體扭棱過程中所形成的面兩兩合併為1個菱形,則其拓樸結構與[[截半立方體]]相同。<ref name="orchidpalms"/> :[[File:Icosahedron_in_cuboctahedron.png|350px]] === 頂點座標 === 這種立體的頂點座標可以用<math>(\pm 2, \pm 1, 0)</math>的循環排列來構造,這個頂點排構建方式又可視為是交錯截角的截角八面體,其與[[耶森二十面體]]相同,但頂點間相連方式不同<ref name=jessen>{{cite journal | author = Børge Jessen | issue = 2 | journal = Nordisk Matematisk Tidskrift | jstor = 24524998 | mr = 0226494 | pages = 90–96 | title = Orthogonal icosahedra | volume = 15 | year = 1967}}</ref>。而若取<math>(\pm \varphi, \pm 1, 0)</math>則會變為正二十面體,其中<math>\varphi</math>為[[黃金比例]]。<ref name=Baez/> == 耶森二十面體 == {{main|耶森二十面體}} [[耶森二十面體]]是一個與扭棱四面體相同頂點排列方式的立體,但耶森二十面體頂點間的相連方式與扭棱四面體不同。耶森二十面體是非凸多面體,並具有直角的二面角。<ref name=grunbaum>{{cite book | author = Branko Grünbaum | contribution = Acoptic polyhedra | contribution-url = https://sites.math.washington.edu/~grunbaum/BG225.Acoptic%20polyhedra.pdf | doi = 10.1090/conm/223/03137 | location = Providence, Rhode Island | mr = 1661382 | pages = 163–199 | publisher = American Mathematical Society | series = Contemporary Mathematics | title = Advances in Discrete and Computational Geometry (South Hadley, MA, 1996) | volume = 223 | year = 1999 | access-date = 2021-08-14 | archive-date = 2021-03-31 | archive-url = https://web.archive.org/web/20210331174406/https://sites.math.washington.edu/~grunbaum/BG225.Acoptic%20polyhedra.pdf | dead-url = no }}</ref> :[[File:Jessen icosahedron with snub icosahedron.png|350px]] == 對偶多面體 == {{main|五角十二面體}} [[File:Polyhedron pyritohedron transparent max.png|thumb|五角十二面體]] 這種立體因為外觀與[[正二十面體]]十分類似,但不是[[正多面體]]因此又被稱為'''偽正二十面體'''。其對偶多面體也非常類似正二十面體的對偶多面體——[[正十二面體]],然而其也不是正多面體。這種立體的[[對偶多面體]]為[[五角十二面體]],是一種由12個不等邊[[五邊形]]組成的[[十二面體]],具有四面體群對稱性。其與[[正十二面體]]類似,皆是由12個全等的五邊形組成,且每個頂點都是3個五邊形的公共頂點<ref>[http://www.galleries.com/minerals/property/crystal.htm#dodecahe Crystal Habit] {{Wayback|url=http://www.galleries.com/minerals/property/crystal.htm#dodecahe |date=20210816104230 }}. Galleries.com. Retrieved on 2016-12-02.</ref>,但由於其面不是正多邊形,其頂點的排佈未能達到五摺對稱性,因此不屬於正多面體。部分的化學物質或礦石<ref name="article 中村慶三郎1942朝鮮コバルト鑛床調査概報">{{Cite journal |title=朝鮮コバルト鑛床調査概報 |author=中村慶三郎 |journal=地学雑誌 |volume=54 |number=6 |pages=211--230 |year=1942 |publisher=公益社団法人 東京地学協会}}</ref>其晶體形狀是這種形狀,例如[[黄铁矿]]和部分的[[天然氣水合物]]<ref>{{Cite web | url=https://sa.ylib.com/MagArticle.aspx?Unit=easylearn&id=2141 | title=天然氣水合物能替代石油嗎? | publisher=科學人雜誌 - 遠流 | quote=天然氣水合物常見的兩種籠狀結構為五角十二面體 | access-date=2021-08-14 | archive-date=2021-08-16 | archive-url=https://web.archive.org/web/20210816104230/https://sa.ylib.com/MagArticle.aspx?Unit=easylearn&id=2141 | dead-url=no }}</ref>。其英文名稱Pyritohedron是來自[[黄铁矿]]的英文pyrite以及多面體的字尾-hedron命名的。<ref name="stonetrust Pyrite">{{Cite Web | url=http://www.stonetrust.com/p53/Pyrite.htm | title=Pyrite | publisher=stonetrust | access-date=2019-11-04 | archive-url=https://web.archive.org/web/20190223202302/http://www.stonetrust.com/p53/Pyrite.htm | archive-date=2019-02-23 | dead-url=no }}</ref> == 相關多面體 == {| class=wikitable |+扭稜立體 |- align=center !原像 |[[File:Tetrahedron.png|150px]]<br/>[[正四面體]] |[[File:Hexahedron.png|150px]]<br/>[[立方體]] |[[File:Octahedron.png|150px]]<br/>[[正八面體]] |[[File:Dodecahedron.png|150px]]<br/>[[正十二面體]] |[[File:Icosahedron.png|150px]]<br/>[[正二十面體]] |- align=center !rowspan=2|扭稜 |rowspan=2|[[File:Snub tetrahedron.png|150px]]<br/>[[扭棱四面體]]<br/>sr{3,3} |colspan=2 style="border-bottom: none;"|[[File:Snub_hexahedron.png|150px]] |colspan=2 style="border-bottom: none;"|[[File:Snub_dodecahedron_ccw.png|150px]] |- align=center |style="border-top: none; border-right: none;"|[[扭棱立方体]]<br/>sr{4,3} |style="border-top: none; border-left: none;"|[[扭棱八面體]]<br/>sr{3,4} |style="border-top: none; border-right: none;"|[[扭棱十二面体]]<br/>sr{5,3} |style="border-top: none; border-left: none;"|[[扭棱二十面体]]<br/>sr{3,5} |- align=center !完全扭稜 |[[File:Holosnub tetrahedron.svg|150px]]<br/>完全扭稜四面體<br/>β{3,3} |[[File:Holosnub cube.svg|150px]]<br/>完全扭稜立方體<br/>β{4,3} |[[File:Holosnub octahedron.png|150px]]<br/>[[二複合二十面體]]<br/>β{3,4} |[[File:Holosnub dodecahedron.svg|150px]]<br/>完全扭稜十二面體<br/>β{5,3} |[[File:Small_snub_icosicosidodecahedron.png|150px]]<br/>[[完全扭稜二十面體]]<br/>β{3,5} |} == 參見 == *[[扭稜鍥形體]] *[[五角十二面體]] *[[正二十面體]] == 參考文獻 == {{Reflist|2}} == 外部連結 == *[https://demonstrations.wolfram.com/SnubTetrahedron/ 扭棱四面體的各種變體] {{Wayback|url=https://demonstrations.wolfram.com/SnubTetrahedron/ |date=20210816102950 }} {{阿基米德立體}} [[Category:均勻多面體]]
该页面使用的模板:
Template:Cite Web
(
查看源代码
)
Template:Cite book
(
查看源代码
)
Template:Cite conference
(
查看源代码
)
Template:Cite journal
(
查看源代码
)
Template:Cite web
(
查看源代码
)
Template:Infobox polyhedron
(
查看源代码
)
Template:Main
(
查看源代码
)
Template:NoteTA
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:Wayback
(
查看源代码
)
Template:阿基米德立體
(
查看源代码
)
返回
扭棱四面體
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息