查看“︁扎哈罗夫-库兹涅佐夫方程”︁的源代码
←
扎哈罗夫-库兹涅佐夫方程
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
'''扎哈罗夫-库兹涅佐夫方程'''(Zhakharov-Kutznezov equation)是一个非线性偏微分方程<ref>Touqeer Nawaza, Ahmet Yıldırımb, Syed Tauseef Mohyud-Din:Analytical solutions Zakharov–Kuznetsov equations,Advanced Powder Technology,Volume 24, Issue 1, January 2013, Pages 252–256</ref>。 <math>\frac{\partial u}{\partial t}+a*u(x,y,t)*\frac{\partial u}{\partial x}+b*u^2(x,y,t)*\frac{\partial u}{\partial x}+c*\frac{\partial^3 u}{\partial x^3}+d*\frac{\partial^3 u}{\partial x\partial y^2}=0</math> ==解析解== 扎哈罗夫-库兹涅佐夫方程有许多解析解,包括<ref>YAN Zhi-Lian and LIU Xi-Qiang Symmetry Reductions and Explicit Solutions for a Generalized Zakharov Kuznetsov Equation,Commun. Theor. Phys. (Beijing, China) 45 (2006) pp. 29–32</ref> <math>u[1] := i/((l*\xi+m*\eta)*t^(1/3))-1/(2*b)</math> :<math>u[4] := \sqrt(-a2/a[4])*sec(\sqrt(-a2)*(l*\xi+m*\eta))</math> :<math>u[5] := e*\sqrt(a2/a4)*tan(\sqrt((1/2)*a2)*(l*\xi+m*\eta))</math> :<math>u[7] := -a1/(2*a2)+e*a1*sinh(2*\sqrt(a2)*(l*\xi+m*\eta))/(2*a2)</math> :<math>u[8] := e*\sqrt(-a2/a4)*tanh(\sqrt(-(1/2)*a2)*(l*\xi+m*\eta))</math> :<math>u[9] := -a2*sech(\sqrt((1/2)*a2)*(l*\xi+m*\eta))^2/a3</math> :<math>u[11] := 1/(a3*(l*\xi+m*\eta)^2)</math> 其中 <math>\xi := x/t^(1/3)+a^2*t^(2/3)/(4*b)+3*c[4]/(c[1]*t^(1/3))</math> <math>\eta := y/t^(1/3)+3*c[3]/(c[1]*t^(1/3))</math> <math>b := -6*(c*l^2+d*m^2)</math> 参数:params := a1 = 1, a2 = 1, a3 = 2.3, a4 = 3.4, d = 1.2, e = 1.3, m = 5.35, c[1] = 5.22, c[2] = 3.23, c[3] = 1.3, c3 = 3.33, c[4] = 1.35, c4 = 1.44, l = 2.1, a[1] = 3.1, a[2] = 3.23, a0 = 5.34, a = .7, c = 1.1; {{Gallery |width=270 |height=215 |align=center |File:Zakharov-Kutznezov equation plot1.gif|Zakharov-Kutznezov equation plot1 |File:Zakharov-Kutznezov equation plot4.gif|Zakharov-Kutznezov equation plot4 |File:Zakharov-Kutznezov equation plot5.gif|Zakharov-Kutznezov equation plot5 |File:Zakharov-Kutznezov equation plot7.gif|Zakharov-Kutznezov equation plot7 |File:Zakharov-Kutznezov equation plot8.gif|Zakharov-Kutznezov equation plot8 |File:Zakharov-Kutznezov equation plot9.gif|Zakharov-Kutznezov equation plot9 |File:Zakharov-Kutznezov equation plot11.gif|Zakharov-Kutznezov equation plot11 }} ==参考文献== {{非线性偏微分方程}} <references/> # *谷超豪 《[[孤立子]]理论中的[[达布变换]]及其几何应用》 上海科学技术出版社 # *阎振亚著 《复杂非线性波的构造性理论及其应用》 科学出版社 2007年 # 李志斌编著 《非线性数学物理方程的行波解》 科学出版社 #王东明著 《消去法及其应用》 科学出版社 2002 # *何青 王丽芬编著 《[[Maple]] 教程》 科学出版社 2010 ISBN 9787030177445 #Graham W. Griffiths William E.Shiesser Traveling Wave Analysis of Partial Differential p135 Equations Academy Press # Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,1997 #Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Springer. #Eryk Infeld and George Rowlands,Nonlinear Waves,Solitons and Chaos,Cambridge 2000 #Saber Elaydi,An Introduction to Difference Equationns, Springer 2000 #Dongming Wang, Elimination Practice,Imperial College Press 2004 # David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004 # George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759 [[category:非线性偏微分方程]] [[category:孤立子]]
该页面使用的模板:
Template:Gallery
(
查看源代码
)
Template:非线性偏微分方程
(
查看源代码
)
返回
扎哈罗夫-库兹涅佐夫方程
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息