查看“︁截角正二十四胞体”︁的源代码
←
截角正二十四胞体
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{NoteTA|G1=Math}} {{Infobox polychoron | name = 截角正二十四胞体 | imagename = Schlegel_half-solid_truncated_24-cell.png | caption = [[施莱格尔投影]]<BR>([[立方体]]胞在前) | polytope = 截角正二十四胞体 | Type = [[均匀多胞体]] | group_type = | Cell = 10<BR>24 [[立方体|(''4.4.4'')]] [[Image:Hexahedron.png|20px]]<BR>24 [[截角八面体|(''4.6.6'')]] [[Image:Truncated octahedron.png|20px]] | Face = 240<BR>144 {4}<BR>96 {6} | Edge = 384 | Vertice = 144 | Vertice_type = [[Image:Truncated 24-cell verf.png|80px]]<BR>Irr. tetrahedron | Schläfli = t<sub>0,1</sub>{3,4,3} | Symmetry_group = | dual = | Properties = [[Convex polytope|convex]], [[isogonal figure|isogonal]],[[环带多面体|环带多胞体]] | Index_references = ''[[截半正二十四胞体|2]]'' 3 ''[[Cantellated 24-cell|4]]'' | Coxeter_group = F<sub>4</sub>, [3,4,3], order 1152 | Coxeter_diagram = {{CDD|node_1|3|node_1|4|node|3|node}} }} '''截角正二十四胞体'''由48个三维胞组成: 24个[[立方体]], 和24个[[截角八面体]]。每个顶点周围环绕着三个[[截角八面体]]和一个[[立方体]]。<ref>截角正二十四胞体是[[截角八面体]]的四维类比。</ref> ==构造== 截角正二十四胞体的细胞可以通过在[[正二十四胞体]]的棱的三分点处截断其顶点。截断的24个[[正八面体]]变成新的[[截角八面体]],并在原来的顶点处产生了24个新的[[立方体]]。 ==结合== [[截角八面体]]的六边形面彼此结合在一起,而它们的正方形面则连接到[[立方体]]。 == 投影 == {| class=wikitable |+ [[正交投影]] |- align=center !F<sub>k</sub><BR>[[考克斯特平面]] !F<sub>4</sub> !B<sub>4</sub> !B<sub>3</sub> !B<sub>2</sub> |- align=center !Graph |<!-- 檔案不存在 [[File:24-cell_t01.svg|150px]] --> |[[File:4-cube t123.svg|150px]] |[[File:24-cell_t01_B3.svg|150px]] |[[File:24-cell_t01_B2.svg|150px]] |- align=center ![[二面体群]] |[12] |[6] |[8] |[4] |} <gallery> Image:Truncated 24-cell net.png|[[展开图]] Image:Truncated simplex stereographic.png|[[球极投影]]<BR>(对着一个 [[截角八面体]]胞) </gallery> ==坐标== 一个棱长为2的截角正二十四胞体的144个顶点的[[笛卡儿坐标系]]坐标 {| | :<math>\left( \frac{3}{\sqrt{10}},\ \sqrt{3 \over 2},\ \pm\sqrt{3},\ \pm1\right)</math> :<math>\left( \frac{3}{\sqrt{10}},\ \sqrt{3 \over 2},\ 0,\ \pm2\right)</math> :<math>\left( \frac{3}{\sqrt{10}},\ \frac{-1}{\sqrt{6}},\ \frac{2}{\sqrt{3}},\ \pm2\right)</math> :<math>\left( \frac{3}{\sqrt{10}},\ \frac{-1}{\sqrt{6}},\ \frac{4}{\sqrt{3}},\ 0 \right)</math> :<math>\left( \frac{3}{\sqrt{10}},\ \frac{-5}{\sqrt{6}},\ \frac{1}{\sqrt{3}},\ \pm1\right)</math> :<math>\left( \frac{3}{\sqrt{10}},\ \frac{-5}{\sqrt{6}},\ \frac{-2}{\sqrt{3}},\ 0 \right)</math> | :<math>\left( -\sqrt{2 \over 5},\ \sqrt{2 \over 3},\ \frac{2}{\sqrt{3}},\ \pm2\right)</math> :<math>\left( -\sqrt{2 \over 5},\ \sqrt{2 \over 3},\ \frac{-4}{\sqrt{3}},\ 0 \right)</math> :<math>\left( -\sqrt{2 \over 5},\ -\sqrt{6},\ 0,\ 0 \right)</math> :<math>\left( \frac{-7}{\sqrt{10}},\ \frac{1}{\sqrt{6}},\ \frac{1}{\sqrt{3}},\ \pm1\right)</math> :<math>\left( \frac{-7}{\sqrt{10}},\ \frac{1}{\sqrt{6}},\ \frac{-2}{\sqrt{3}},\ 0 \right)</math> :<math>\left( \frac{-7}{\sqrt{10}},\ -\sqrt{3 \over 2},\ 0,\ 0 \right)</math> |} 更简单的,截角正二十四胞体的顶点是五维空间[[笛卡儿坐标系]]的(0,0,0,1,2)或(0,1,2,2,2)的全排列。 == 注释 == <references/> == 参考文献 == * [[Harold Scott MacDonald Coxeter|H.S.M. Coxeter]]: ** H.S.M. Coxeter, ''Regular Polytopes'', 3rd Edition, Dover New York, 1973 ** '''Kaleidoscopes: Selected Writings of H.S.M. Coxeter''', editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html] {{Wayback|url=http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html |date=20160711140441 }} *** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', [Math. Zeit. 46 (1940) 380-407, MR 2,10] *** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', [Math. Zeit. 188 (1985) 559-591] *** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', [Math. Zeit. 200 (1988) 3-45] *[[Coxeter]], ''The Beauty of Geometry: Twelve Essays'', Dover Publications, 1999, ISBN 0-486-40919-8 p.88 (Chapter 5: Regular Skew Polyhedra in three and four dimensions and their topological analogues, Proceedings of the London Mathematics Society, Ser. 2, Vol 43, 1937.) **Coxeter, H. S. M. ''Regular Skew Polyhedra in Three and Four Dimensions.'' Proc. London Math. Soc. 43, 33-62, 1937. * [[Norman Johnson (mathematician)|Norman Johnson]] ''Uniform Polytopes'', Manuscript (1991) ** N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. (1966) *{{GlossaryForHyperspace | anchor=Pentachoron | title=Pentachoron}} ** {{PolyCell | urlname = section1.html| title = 1. Convex uniform polychora based on the pentachoron - Model 3}} * {{KlitzingPolytopes|polychora.htm|4D|uniform polytopes (polychora)}} x3x3o3o - tip, o3x3x3o - deca [[Category:四维几何]] [[Category:四维多胞体]] [[Category:多胞体]]
该页面使用的模板:
Template:GlossaryForHyperspace
(
查看源代码
)
Template:Infobox polychoron
(
查看源代码
)
Template:KlitzingPolytopes
(
查看源代码
)
Template:NoteTA
(
查看源代码
)
Template:PolyCell
(
查看源代码
)
Template:Wayback
(
查看源代码
)
返回
截角正二十四胞体
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息