查看“︁截半正五胞体”︁的源代码
←
截半正五胞体
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{NoteTA|G1=Math}} {{Infobox polychoron | name = 截半正五胞体 | imagename = Schlegel half-solid rectified 5-cell.png | caption = [[施莱格尔投影]]<BR>(显示5个[[正四面体]]胞) | polytope = 截半正五胞体 | Type = [[均匀多胞体]] | group_type = | Cell =10<br>5 [[正四面体|(''3.3.3'')]] [[Image:Tetrahedron.png|20px]]<BR>5 [[正八面体|(''3.3.3.3'')]] <!-- 檔案不存在 [[Image:File:Octahedron.png|20px]] --> | Face =30 {3} | Edge =30 | Vertice =10 | Vertice_type =[[Image:Rectified 5-cell verf.png|80px]]<BR>[[三角柱]] | Schläfli =t<sub>1</sub>{3,3,3} | Symmetry_group = | dual = | Properties =[[Convex polytope|convex]], [[isogonal figure|isogonal]], [[isotoxal figure|isotoxal]] | Index_references = ''[[正五胞体|1]]'' 2 ''[[截角正五胞体|3]]'' | Coxeter_group =A<sub>4</sub>, [3,3,3], order 120 | Coxeter_diagram = {{CDD|node|3|node_1|3|node|3|node}} }} [[Image:triangular prism.png|220px|thumb|right|[[顶点图]]: [[三角柱]]<BR>5个面:<BR> [[Image:tetrahedron vertfig.svg|100px]][[Image:Octahedron vertfig.svg|100px]]<BR> 2([[正四面体|''3.3.3'']])和3([[正八面体|''3.3.3.3'']]) ]] 在[[四维空间|四维]][[几何学]]中,'''截半正五胞体'''是一个由5个正四面体和5个正八面体[[胞]]组成的[[均匀多胞体]]。每条棱都连接到一个正四面体和两个正八面体。每个顶点周围环绕着两个[[正四面体]]和三个[[正八面体]]。它总共有30个三角形面,30条棱和10个顶点。它的[[顶点图]]是正[[三角柱]]。截半正五胞体是三个由两种或更多的[[正多面体]]胞组成的四维半正多胞体之一。 ==构造== 截角正五胞体的细胞可以通过在[[正五胞体]]的棱的三分点处截断其顶点。截断的五个[[正四面体]]变成新的[[截角四面体]],并在原来的顶点处产生了五个新的[[正四面体]]。 ==结合== [[截角四面体]]的六边形面彼此结合在一起,而它们的三角形面则连接到[[正四面体]]。 == 投影 == {| class=wikitable |+ [[正交投影]] |- align=center !A<sub>k</sub><BR>[[考克斯特平面]] !A<sub>4</sub> !A<sub>3</sub> !A<sub>2</sub> |- align=center !Graph |[[File:4-simplex_t1.svg|150px]] |[[File:4-simplex_t1_A3.svg|150px]] |[[File:4-simplex_t1_A2.svg|150px]] |- align=center ![[二面体群]] |[5] |[4] |[3] |} {| class="wikitable" width=640 |align=center|[[Image:Rectified simplex stereographic.png|220px]]<BR>[[施莱格尔投影]]<BR>(对着一个[[正八面体]]胞) |align=center|[[Image:Rectified 5-cell net.png|220px]]<BR>[[展开图]] |- |align=center|[[Image:Rectified 5cell-perspective-tetrahedron-first-01.gif]] |[[正四面体]]为中心的3维透视投影,最接近的正四面体呈红色,周围的4个正八面体呈绿色。远端的胞清晰度降低(虽然可以从棱看出它们)。投影只是在三维空间中旋转,而不是在四维空间中旋转。 |} ==坐标== 一个棱长为2的截半正五胞体的顶点的[[笛卡儿坐标系]]坐标 {| | :<math>\left(\sqrt{\frac{2}{5}},\ \frac{2}{\sqrt{6}},\ \frac{2}{\sqrt{3}},\ 0 \right)</math> :<math>\left(\sqrt{\frac{2}{5}},\ \frac{2}{\sqrt{6}},\ \frac{-1}{\sqrt{3}},\ \pm1\right)</math> :<math>\left(\sqrt{\frac{2}{5}},\ \frac{-2}{\sqrt{6}},\ \frac{1}{\sqrt{3}},\ \pm1\right)</math> :<math>\left(\sqrt{\frac{2}{5}},\ \frac{-2}{\sqrt{6}},\ \frac{-2}{\sqrt{3}},\ 0 \right)</math> | :<math>\left(\frac{-3}{\sqrt{10}},\ \frac{1}{\sqrt{6}},\ \frac{1}{\sqrt{3}},\ \pm1\right)</math> :<math>\left(\frac{-3}{\sqrt{10}},\ \frac{1}{\sqrt{6}},\ \frac{-2}{\sqrt{3}},\ 0 \right)</math> :<math>\left(\frac{-3}{\sqrt{10}},\ -\sqrt{\frac{3}{2}},\ 0,\ 0 \right)</math> |} 更简单的,截半正五胞体的顶点是五维空间[[笛卡儿坐标系]]的(0,0,0,1,1)或(0,0,1,1,1)的全排列。 == 参考文献 == * [[Thorold Gosset|T. Gosset]]: ''On the Regular and Semi-Regular Figures in Space of n Dimensions'', [[Messenger of Mathematics]], Macmillan, 1900 * [[Harold Scott MacDonald Coxeter|H.S.M. Coxeter]]: ** H.S.M. Coxeter, ''Regular Polytopes'', 3rd Edition, Dover New York, 1973 ** '''Kaleidoscopes: Selected Writings of H.S.M. Coxeter''', editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html] {{Wayback|url=http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html |date=20160711140441 }} *** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', [Math. Zeit. 46 (1940) 380-407, MR 2,10] *** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', [Math. Zeit. 188 (1985) 559-591] *** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', [Math. Zeit. 200 (1988) 3-45] * [[Norman Johnson (mathematician)|Norman Johnson]] ''Uniform Polytopes'', Manuscript (1991) ** N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. (1966) == 外部链接 == * [http://www.polytope.de/nr03.html Rectified 5-cell] {{Wayback|url=http://www.polytope.de/nr03.html |date=20201024171452 }} - data and images ** {{PolyCell | urlname = section1.html| title = 1. Convex uniform polychora based on the pentachoron - Model 2}} * {{KlitzingPolytopes|polychora.htm|4D uniform polytopes (polychora)|x3o3o3o - rap}} [[Category:四维几何]] [[Category:四维多胞体]] [[Category:多胞体]]
该页面使用的模板:
Template:Infobox polychoron
(
查看源代码
)
Template:KlitzingPolytopes
(
查看源代码
)
Template:NoteTA
(
查看源代码
)
Template:PolyCell
(
查看源代码
)
Template:Wayback
(
查看源代码
)
返回
截半正五胞体
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息