查看“︁微分的線性”︁的源代码
←
微分的線性
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{Copy edit|time=2020-08-22T19:15:41+00:00}} {{微积分学}} 在微积分中,函数的任何线性组合的导数等于函数的导数的相同线性组合<ref>{{citation|title=Calculus: Single Variable, Volume 1|first1=Brian E.|last1=Blank|first2=Steven George|last2=Krantz|publisher=Springer|year=2006|isbn=9781931914598|page=177|url=https://books.google.com/books?id=hMY8lbX87Y8C&pg=PA177|accessdate=2020-08-22|archive-date=2021-04-29|archive-url=https://web.archive.org/web/20210429150734/https://books.google.com/books?id=hMY8lbX87Y8C&pg=PA177|dead-url=no}}.</ref>,此属性称为'''微分的线性(linearity of differentiation)'''<ref>{{citation|title=Calculus, Volume 1|first=Gilbert|last=Strang|publisher=SIAM|year=1991|isbn=9780961408824|pages=71–72|url=https://books.google.com/books?id=OisInC1zvEMC&pg=PA71|accessdate=2020-08-22|archive-date=2021-04-29|archive-url=https://web.archive.org/web/20210429150755/https://books.google.com/books?id=OisInC1zvEMC&pg=PA71|dead-url=no}}.</ref>、线性法则(rule of linearity)、或微分的[[叠加原理|叠加法则]]<ref>{{citation|title=Calculus Using Mathematica|first=K. D.|last=Stroyan|publisher=Academic Press|year=2014|isbn=9781483267975|page=89|url=https://books.google.com/books?id=C8DiBQAAQBAJ&pg=PA89|accessdate=2020-08-22|archive-date=2021-04-29|archive-url=https://web.archive.org/web/20210429150735/https://books.google.com/books?id=C8DiBQAAQBAJ&pg=PA89|dead-url=no}}</ref>。导数的基本属性是将两个简单的微分法则封装在一起:求和法则(两个函数之和的导数是导数的和)和常数法则(函數的常數倍的導數是該函數的導數的常數倍)<ref>{{citation|title=Practical Analysis in One Variable|series=[[Undergraduate Texts in Mathematics]]|first=Donald|last=Estep|publisher=Springer|year=2002|isbn=9780387954844|pages=259–260|url=https://books.google.com/books?id=trC-jTRffesC&pg=PA259|contribution=20.1 Linear Combinations of Functions|accessdate=2020-08-22|archive-date=2021-04-29|archive-url=https://web.archive.org/web/20210429150804/https://books.google.com/books?id=trC-jTRffesC&pg=PA259|dead-url=no}}.</ref><ref>{{citation|title=Understanding Real Analysis|first=Paul|last=Zorn|publisher=CRC Press|year=2010|isbn=9781439894323|page=184|url=https://books.google.com/books?id=1WLNBQAAQBAJ&pg=PA184|accessdate=2020-08-22|archive-date=2021-04-29|archive-url=https://web.archive.org/web/20210429150749/https://books.google.com/books?id=1WLNBQAAQBAJ&pg=PA184|dead-url=no}}.</ref>。因此,可以说微分作用是线性的,或者[[微分算子]]是线性的算子<ref>{{citation|title=Finite-Dimensional Linear Algebra|series=Discrete Mathematics and Its Applications|first=Mark S.|last=Gockenbach|publisher=CRC Press|year=2011|isbn=9781439815649|page=103|url=https://books.google.com/books?id=xP0RFUHWQI0C&pg=PA103|accessdate=2020-08-22|archive-date=2021-04-29|archive-url=https://web.archive.org/web/20210429150750/https://books.google.com/books?id=xP0RFUHWQI0C&pg=PA103|dead-url=no}}.</ref>。 == 說明 == 設 {{math|''f''}} 和 {{math|''g''}} 為函數,同時 {{math|''α''}} 和 {{math|''β''}} 是常數,思考: : <math>\frac{\mbox{d}}{\mbox{d} x} ( \alpha \cdot f(x) + \beta \cdot g(x) ) </math> 通過微分的求和法則: : <math>\frac{\mbox{d}}{\mbox{d} x} ( \alpha \cdot f(x) ) + \frac{\mbox{d}}{\mbox{d} x} (\beta \cdot g(x))</math> 通過微分的常數法則,這一式子變為: : <math>\alpha \cdot f'(x) + \beta \cdot g'(x)</math> 進而: : <math>\frac{\mbox{d}}{\mbox{d} x}(\alpha \cdot f(x) + \beta \cdot g(x)) = \alpha \cdot f'(x) + \beta \cdot g'(x)</math> 忽略括號,這常被寫作 : <math>(\alpha \cdot f + \beta \cdot g)' = \alpha \cdot f'+ \beta \cdot g'</math> == 參考資料 == {{Reflist|2}} [[Category:包含证明的条目]] [[Category:微分学]] [[Category:求导法则]] [[Category:分析定理]] [[Category:微積分定理]]
该页面使用的模板:
Template:Citation
(
查看源代码
)
Template:Copy edit
(
查看源代码
)
Template:Math
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:微积分学
(
查看源代码
)
返回
微分的線性
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息