查看“︁弹性力学”︁的源代码
←
弹性力学
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{NoteTA|G1=Physics}} '''弹性力学''' (Theory of Elasticity),也称'''弹性理论''',是[[固体力学]]的一个分支,研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移问题。 == 基本概念与基本假设 == === 基本概念 === {{See also|力|应力|应变 (物理学)|形變|位移|弹性 (物理学)}} 作用于物体的外力可分为体积力(body force)和[[表面力]] (surface force)。体积力是作用在物体内部体积上的外力,简称体力,例如[[重力]]、[[惯性力]]、[[电磁力]]等。表面力是作用在物体表面上的外力,简称面力,例如[[流体压力]]、接触力等。 === 基本假设 === # 连续性:假定物体是连续的,即整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙,并且在整个变形过程中保持其连续性。 # 完全弹性:假定物体是完全弹性的,即物体在引起形变的外力去除后能完全恢复其初始的形状和尺寸,物体的形变与其所受外力具有一一对应的函数关系。 # 均匀性:假定物体是均匀的,即整个物体的所有部分具有相同的弹性性质。 # 各向同性:既定物体是各向同性的,即物体的弹性性质在所有各个方向都相同,与考察方向无关。 # 小变形:假定物体受力后的位移和形变是微小的,整个物体所有个点的位移都远小于物体原来的尺寸,且应变与转角都远小于1。 对符合上述前4项假定的物体,称为理想弹性体。 == 基本方程 == === 平衡方程 === ==== 應力形式的靜力平衡方程式 <ref> {{Cite book | author = Stephen Timoshenko and J. N. Goodier | title = Theory of Elasticity | url = https://archive.org/details/theoryofelastici00timo | location = New York | publisher = McGraw-Hill | date = 1951 | pages = [https://archive.org/details/theoryofelastici00timo/page/n251 229] | language = en }} </ref>==== <math> \begin{align} \frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + X = 0 \\ \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + Y = 0 \\ \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_z}{\partial z} + Z = 0 \\ \end{align} </math> ==== 张量形式 ==== <math> \nabla \cdot \boldsymbol{\sigma} + \boldsymbol{f} = \boldsymbol{0} </math> === 几何方程 === ==== 應變與位移關係式 <ref> {{Cite book | author = Stephen Timoshenko and J. N. Goodier | title = Theory of Elasticity | url = https://archive.org/details/theoryofelastici00timo | location = New York | publisher = McGraw-Hill | date = 1951 | pages = [https://archive.org/details/theoryofelastici00timo/page/n45 23] | language = en }} </ref>==== <math> \begin{align} \epsilon_x = \frac{\partial u}{\partial x},\quad \gamma_{yz} = \frac{1}{2} \left( \frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right) \\ \epsilon_y = \frac{\partial v}{\partial y},\quad \gamma_{zx} = \frac{1}{2} \left( \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \\ \epsilon_z = \frac{\partial w}{\partial z},\quad \gamma_{xy} = \frac{1}{2} \left( \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) \\ \end{align} </math> ==== 张量形式(向量) ==== <math> \boldsymbol{\epsilon} = \frac{1}{2} \left( \boldsymbol{u} \nabla + \nabla \boldsymbol{u} \right) </math> === 等向性材料的應力與應變關係式(虎克定律)(本构方程) <ref> {{Cite book | author = Stephen Timoshenko and J. N. Goodier | title = Theory of Elasticity | url = https://archive.org/details/theoryofelastici00timo | location = New York | publisher = McGraw-Hill | date = 1951 | pages = [https://archive.org/details/theoryofelastici00timo/page/n47 25] | language = en }} </ref> === {{See also|弹性模量|泊松比|剪切模量}} <math> \begin{align} \epsilon_x = \frac{1}{E} \left[ \sigma_x - \nu \left( \sigma_y + \sigma_z \right) \right],\quad \gamma_{yz} = \frac{1}{G} \tau_{yz} \\ \epsilon_y = \frac{1}{E} \left[ \sigma_y - \nu \left( \sigma_z + \sigma_x \right) \right],\quad \gamma_{zx} = \frac{1}{G} \tau_{zx} \\ \epsilon_z = \frac{1}{E} \left[ \sigma_z - \nu \left( \sigma_x + \sigma_y \right) \right],\quad \gamma_{xy} = \frac{1}{G} \tau_{xy} \\ \end{align} </math> == 平面问题 == === [[平面應力]]問題 <ref> {{Cite book | author = Stephen Timoshenko and J. N. Goodier | title = Theory of Elasticity | url = https://archive.org/details/theoryofelastici00timo | location = New York | publisher = McGraw-Hill | date = 1951 | pages = [https://archive.org/details/theoryofelastici00timo/page/n33 11] | language = en }} </ref>=== <math> \sigma_z = \tau_{zx} = \tau_{zy} = 0 </math> === [[平面應變]]問題 <ref> {{Cite book | author = Stephen Timoshenko and J. N. Goodier | title = Theory of Elasticity | url = https://archive.org/details/theoryofelastici00timo | location = New York | publisher = McGraw-Hill | date = 1951 | pages = [https://archive.org/details/theoryofelastici00timo/page/n33 11] | language = en }} </ref> === <math> \epsilon_z = \gamma_{zx} = \gamma_{zy} = 0 </math> == 参见 == * [[胡克定律]] * [[材料力学]] * [[结构力学]] * [[有限单元法]] == 参考文献 == {{reflist|30em}} == 外部链接 == {{连续介质力学}} [[Category:固体力学]]
该页面使用的模板:
Template:Cite book
(
查看源代码
)
Template:NoteTA
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:See also
(
查看源代码
)
Template:连续介质力学
(
查看源代码
)
返回
弹性力学
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息