查看“︁库普-库珀施密特方程”︁的源代码
←
库普-库珀施密特方程
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
'''库普-库珀施密特方程'''(Kaup-Kupershmidt Equation)是一个非线性偏微分方程:<ref>Qinghua Feng New Analytical Solutions For (3+1) Dimensional Kaup-Kupershmidt Equation,2012 International Conference on Computer Technology and Science (ICCTS 2012) IPCSIT vol. 47 (2012)</ref> <math>\frac{\partial^4 u(x,t)}{\partial x^4} +\frac{\partial u(x,t)}{\partial x} +45(\frac{\partial u(x,t)}{\partial x}*u(x,t)^2 -(75/2)*\frac{\partial^2 u(x,t)}{\partial x^2}*\frac{\partial u(x,t)}{\partial x} -15*u(x,t)*\frac{\partial^3 u(x,t)}{\partial x^3} </math> ==行波解== 利用[[Maple]]软件包TWSolution,随所选定展开函数不同,可得多种行波解<ref>Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Page 27</ref> ;tanh 展开 <math>g[2] := {u(x, t) = -(2/3)*(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))^2+(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))^2*tanh(_C1+(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))*x+_C3*t)^2}</math> <math>g[3] := {u(x, t) = -(2/3)*(-(1/2)*sqrt(2)+(1/2*I)*sqrt(2))^2+(-(1/2)*sqrt(2)+(1/2*I)*sqrt(2))^2*tanh(_C1+(-(1/2)*sqrt(2)+(1/2*I)*sqrt(2))*x+_C3*t)^2}</math> <math>g[4] := {u(x, t) = -(2/3)*((1/2)*sqrt(2)-(1/2*I)*sqrt(2))^2+((1/2)*sqrt(2)-(1/2*I)*sqrt(2))^2*tanh(_C1+((1/2)*sqrt(2)-(1/2*I)*sqrt(2))*x+_C3*t)^2}</math> <math>g[5] := {u(x, t) = -(2/3)*((1/2)*sqrt(2)+(1/2*I)*sqrt(2))^2+((1/2)*sqrt(2)+(1/2*I)*sqrt(2))^2*tanh(_C1+((1/2)*sqrt(2)+(1/2*I)*sqrt(2))*x+_C3*t)^2}</math> <math>g[6] := {u(x, t) = -(4/3)*(-(1/22)*sqrt(2)*11^(3/4)-(1/22*I)*sqrt(2)*11^(3/4))^2+2*(-(1/22)*sqrt(2)*11^(3/4)-(1/22*I)*sqrt(2)*11^(3/4))^2*tanh(_C1+(-(1/44)*sqrt(2)*11^(3/4)-(1/44*I)*sqrt(2)*11^(3/4))*x+_C3*t)^2}</math> <math>g[7] := {u(x, t) = -(4/3)*(-(1/22)*sqrt(2)*11^(3/4)+(1/22*I)*sqrt(2)*11^(3/4))^2+2*(-(1/22)*sqrt(2)*11^(3/4)+(1/22*I)*sqrt(2)*11^(3/4))^2*tanh(_C1+(-(1/44)*sqrt(2)*11^(3/4)+(1/44*I)*sqrt(2)*11^(3/4))*x+_C3*t)^2}</math> <math>g[8] := {u(x, t) = -(4/3)*((1/22)*sqrt(2)*11^(3/4)-(1/22*I)*sqrt(2)*11^(3/4))^2+2*((1/22)*sqrt(2)*11^(3/4)-(1/22*I)*sqrt(2)*11^(3/4))^2*tanh(_C1+((1/44)*sqrt(2)*11^(3/4)-(1/44*I)*sqrt(2)*11^(3/4))*x+_C3*t)^2}</math> <math>g[9] := {u(x, t) = -(4/3)*((1/22)*sqrt(2)*11^(3/4)+(1/22*I)*sqrt(2)*11^(3/4))^2+2*((1/22)*sqrt(2)*11^(3/4)+(1/22*I)*sqrt(2)*11^(3/4))^2*tanh(_C1+((1/44)*sqrt(2)*11^(3/4)+(1/44*I)*sqrt(2)*11^(3/4))*x+_C3*t)^2}</math> {{Gallery |width=250 |height=200 |align=center |File:Kaup Kupershmidt eq tanh method animation2.gif|Kaup Kupershmidt eq tanh method animation2 |File:Kaup Kupershmidt eq tanh method animation7.gif|Kaup Kupershmidt eq tanh method animation7 |File:Kaup Kupershmidt eq tanh method animation8.gif|Kaup Kupershmidt eq tanh method animation8 }} ;JacobiSN 展开 <math>g[2] := {u(x, t) = -(1/2)*_C3^2-(1/6)*sqrt(-3*_C3^4-4)+((1/2)*_C3^2+(1/2)*sqrt(-3*_C3^4-4))*JacobiSN(_C2+_C3*x+_C4*t, (1/2)*sqrt(2*_C3^2+2*sqrt(-3*_C3^4-4))/_C3)^2}</math> <math>g[3] := {u(x, t) = -(1/2)*_C3^2+(1/6)*sqrt(-3*_C3^4-4)+((1/2)*_C3^2-(1/2)*sqrt(-3*_C3^4-4))*JacobiSN(_C2+_C3*x+_C4*t, (1/2)*sqrt(2*_C3^2-2*sqrt(-3*_C3^4-4))/_C3)^2}</math> <math>g[4] := {u(x, t) = -4*_C3^2-(2/33)*sqrt(-1452*_C3^4-11)+(4*_C3^2+(2/11)*sqrt(-1452*_C3^4-11))*JacobiSN(_C2+_C3*x+_C4*t, (1/22)*sqrt(242*_C3^2+11*sqrt(-1452*_C3^4-11))/_C3)^2}</math> <math>g[5] := {u(x, t) = -4*_C3^2+(2/33)*sqrt(-1452*_C3^4-11)+(4*_C3^2-(2/11)*sqrt(-1452*_C3^4-11))*JacobiSN(_C2+_C3*x+_C4*t, (1/22)*sqrt(242*_C3^2-11*sqrt(-1452*_C3^4-11))/_C3)^2}</math> {{Gallery |width=250 |height=200 |align=center |File:Kaup Kupershmidt JacobiSN method animation2.gif|Kaup Kupershmidt JacobiSN method animation2 |File:Kaup Kupershmidt JacobiSN method animation3.gif|Kaup Kupershmidt JacobiSN method animation3 |File:Kaup Kupershmidt JacobiSN method animation4.gif|Kaup Kupershmidt JacobiSN method animation4}} ;sech 展开 <math>g[2] := {u(x, t) = (1/3)*(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))^2-(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))^2*sech(_C1+(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))*x+_C3*t)^2}</math> <math>g[3] := {u(x, t) = (1/3)*(-(1/2)*sqrt(2)+(1/2*I)*sqrt(2))^2-(-(1/2)*sqrt(2)+(1/2*I)*sqrt(2))^2*sech(_C1+(-(1/2)*sqrt(2)+(1/2*I)*sqrt(2))*x+_C3*t)^2}</math> <math>g[4] := {u(x, t) = (1/3)*((1/2)*sqrt(2)-(1/2*I)*sqrt(2))^2-((1/2)*sqrt(2)-(1/2*I)*sqrt(2))^2*sech(_C1+((1/2)*sqrt(2)-(1/2*I)*sqrt(2))*x+_C3*t)^2}</math> <math>g[5] := {u(x, t) = (1/3)*((1/2)*sqrt(2)+(1/2*I)*sqrt(2))^2-((1/2)*sqrt(2)+(1/2*I)*sqrt(2))^2*sech(_C1+((1/2)*sqrt(2)+(1/2*I)*sqrt(2))*x+_C3*t)^2}</math> <math>g[6] := {u(x, t) = (2/3)*(-(1/22)*sqrt(2)*11^(3/4)-(1/22*I)*sqrt(2)*11^(3/4))^2-2*(-(1/22)*sqrt(2)*11^(3/4)-(1/22*I)*sqrt(2)*11^(3/4))^2*sech(_C1+(-(1/44)*sqrt(2)*11^(3/4)-(1/44*I)*sqrt(2)*11^(3/4))*x+_C3*t)^2}</math> <math>g[7] := {u(x, t) = (2/3)*(-(1/22)*sqrt(2)*11^(3/4)+(1/22*I)*sqrt(2)*11^(3/4))^2-2*(-(1/22)*sqrt(2)*11^(3/4)+(1/22*I)*sqrt(2)*11^(3/4))^2*sech(_C1+(-(1/44)*sqrt(2)*11^(3/4)+(1/44*I)*sqrt(2)*11^(3/4))*x+_C3*t)^2}</math> <math>g[8] := {u(x, t) = (2/3)*((1/22)*sqrt(2)*11^(3/4)-(1/22*I)*sqrt(2)*11^(3/4))^2-2*((1/22)*sqrt(2)*11^(3/4)-(1/22*I)*sqrt(2)*11^(3/4))^2*sech(_C1+((1/44)*sqrt(2)*11^(3/4)-(1/44*I)*sqrt(2)*11^(3/4))*x+_C3*t)^2}</math> <math>g[9] := {u(x, t) = (2/3)*((1/22)*sqrt(2)*11^(3/4)+(1/22*I)*sqrt(2)*11^(3/4))^2-2*((1/22)*sqrt(2)*11^(3/4)+(1/22*I)*sqrt(2)*11^(3/4))^2*sech(_C1+((1/44)*sqrt(2)*11^(3/4)+(1/44*I)*sqrt(2)*11^(3/4))*x+_C3*t)^2}</math> {{Gallery |width=250 |height=200 |align=center |File:Kaup Kupershmidt sech method animation2.gif|Kaup Kupershmidt sech method animation2 |File:Kaup Kupershmidt sech method animation4.gif|Kaup Kupershmidt sech method animation4 |File:Kaup Kupershmidt sech method animation8.gif|Kaup Kupershmidt sech method animation8 }} ;sec、coth 展开 <math>g[2] := {u(x, t) = -(1/3)*(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))^2+(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))^2*sec(_C1+(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))*x+_C3*t)^2}</math> <math>g[3] := {u(x, t) = -(1/3)*(-(1/2)*sqrt(2)+(1/2*I)*sqrt(2))^2+(-(1/2)*sqrt(2)+(1/2*I)*sqrt(2))^2*sec(_C1+(-(1/2)*sqrt(2)+(1/2*I)*sqrt(2))*x+_C3*t)^2}</math> <math>g[4] := {u(x, t) = -(1/3)*((1/2)*sqrt(2)-(1/2*I)*sqrt(2))^2+((1/2)*sqrt(2)-(1/2*I)*sqrt(2))^2*sec(_C1+((1/2)*sqrt(2)-(1/2*I)*sqrt(2))*x+_C3*t)^2}</math> <math>g[5] := {u(x, t) = -(1/3)*((1/2)*sqrt(2)+(1/2*I)*sqrt(2))^2+((1/2)*sqrt(2)+(1/2*I)*sqrt(2))^2*sec(_C1+((1/2)*sqrt(2)+(1/2*I)*sqrt(2))*x+_C3*t)^2}</math> <math>g[6] := {u(x, t) = -(2/3)*(-(1/22)*sqrt(2)*11^(3/4)-(1/22*I)*sqrt(2)*11^(3/4))^2+2*(-(1/22)*sqrt(2)*11^(3/4)-(1/22*I)*sqrt(2)*11^(3/4))^2*sec(_C1+(-(1/44)*sqrt(2)*11^(3/4)-(1/44*I)*sqrt(2)*11^(3/4))*x+_C3*t)^2}</math> <math>g[7] := {u(x, t) = -(2/3)*(-(1/22)*sqrt(2)*11^(3/4)+(1/22*I)*sqrt(2)*11^(3/4))^2+2*(-(1/22)*sqrt(2)*11^(3/4)+(1/22*I)*sqrt(2)*11^(3/4))^2*sec(_C1+(-(1/44)*sqrt(2)*11^(3/4)+(1/44*I)*sqrt(2)*11^(3/4))*x+_C3*t)^2}</math> <math>g[8] := {u(x, t) = -(2/3)*((1/22)*sqrt(2)*11^(3/4)-(1/22*I)*sqrt(2)*11^(3/4))^2+2*((1/22)*sqrt(2)*11^(3/4)-(1/22*I)*sqrt(2)*11^(3/4))^2*sec(_C1+((1/44)*sqrt(2)*11^(3/4)-(1/44*I)*sqrt(2)*11^(3/4))*x+_C3*t)^2}</math> <math>g[9] := {u(x, t) = -(2/3)*((1/22)*sqrt(2)*11^(3/4)+(1/22*I)*sqrt(2)*11^(3/4))^2+2*((1/22)*sqrt(2)*11^(3/4)+(1/22*I)*sqrt(2)*11^(3/4))^2*sec(_C1+((1/44)*sqrt(2)*11^(3/4)+(1/44*I)*sqrt(2)*11^(3/4))*x+_C3*t)^2}</math> <math>g[10] := {u(x, t) = -(2/3)*(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))^2+(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))^2*coth(_C1+(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))*x+_C3*t)^2}</math> {{Gallery |width=250 |height=200 |align=center |File:Kaup Kupershmidt sec method animation3.gif|Kaup Kupershmidt sec method animation3 |File:Kaup Kupershmidt sec method animation5.gif|Kaup Kupershmidt sec method animation5 |File:Kaup Kupershmidt sec method animation10.gif|Kaup Kupershmidt sec method animation10 }} ;csch 展开 <math> {u(x, t) = _C4}</math> <math>g[2] := {u(x, t) = (1/3)*(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))^2+(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))^2*csch(_C1+(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))*x+_C3*t)^2}</math> <math>g[3] := {u(x, t) = (1/3)*(-(1/2)*sqrt(2)+(1/2*I)*sqrt(2))^2+(-(1/2)*sqrt(2)+(1/2*I)*sqrt(2))^2*csch(_C1+(-(1/2)*sqrt(2)+(1/2*I)*sqrt(2))*x+_C3*t)^2}</math> <math>g[4] := {u(x, t) = (1/3)*((1/2)*sqrt(2)-(1/2*I)*sqrt(2))^2+((1/2)*sqrt(2)-(1/2*I)*sqrt(2))^2*csch(_C1+((1/2)*sqrt(2)-(1/2*I)*sqrt(2))*x+_C3*t)^2}</math> <math>g[5] := {u(x, t) = (1/3)*((1/2)*sqrt(2)+(1/2*I)*sqrt(2))^2+((1/2)*sqrt(2)+(1/2*I)*sqrt(2))^2*csch(_C1+((1/2)*sqrt(2)+(1/2*I)*sqrt(2))*x+_C3*t)^2}</math> {{Gallery |width=250 |height=200 |align=center |File:Kaup Kupershmidt csch method animation2.gif|Kaup Kupershmidt csch method animation2 |File:Kaup Kupershmidt csch method animation3.gif|Kaup Kupershmidt csch method animation3 |File:Kaup Kupershmidt csch method animation5.gif|Kaup Kupershmidt csch method animation5 }} ==参考文献== <references/> # *谷超豪 《[[孤立子]]理论中的[[达布变换]]及其几何应用》 上海科学技术出版社 # *阎振亚著 《复杂非线性波的构造性理论及其应用》 科学出版社 2007年 # 李志斌编著 《非线性数学物理方程的行波解》 科学出版社 #王东明著 《消去法及其应用》 科学出版社 2002 # *何青 王丽芬编著 《[[Maple]] 教程》 科学出版社 2010 ISBN 9787030177445 #Graham W. Griffiths William E.Shiesser Traveling Wave Analysis of Partial Differential p135 Equations Academy Press # Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,1997 #Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Springer. #Eryk Infeld and George Rowlands,Nonlinear Waves,Solitons and Chaos,Cambridge 2000 #Saber Elaydi,An Introduction to Difference Equationns, Springer 2000 #Dongming Wang, Elimination Practice,Imperial College Press 2004 # David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004 # George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759 {{非线性偏微分方程}} [[Category:偏微分方程]] [[category:孤立子]]
该页面使用的模板:
Template:Gallery
(
查看源代码
)
Template:非线性偏微分方程
(
查看源代码
)
返回
库普-库珀施密特方程
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息