查看“︁川原方程”︁的源代码
←
川原方程
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
[[File:Kawahara pde Maple animation.gif|right|200px]] [[File:Kawahara pde Maple plot.png|thumb|right|200px|川原方程图]] [[File:Kawahara pde Maple 3d plot.png|thumb|right|200px|川原方程 Maple 3D 图]] '''川原方程'''(Kawahara pde)是一个非线性偏微分方程:<ref> Graham W. Griffiths William E.Shiesser Traveling Wave Analysis of Partial Differential p197-238 Equations Academy Press</ref> <math>\frac{\partial u}{\partial t}+u*\frac{\partial u}{\partial x}+a*\frac{\partial^3 u}{\partial x^3}=b*\frac{\partial^5 u}{\partial x^5}</math> 广义川原方程有如下形式:<ref> Inna Shingareva, Carlos Lizarraga-Celaya, Solving Nonlinear Partial Differential Equations with Maple and Mathematica , Springer, p192</ref> <math>\frac{\partial u}{\partial t}+(1+u^2)*\frac{\partial u}{\partial x}+a*\frac{\partial^3 u}{\partial x^3}=b*\frac{\partial^5 u}{\partial x^5}</math> ==行波解== 川原方程有孤立子解:<ref>李志斌 非线性数学物理方程的行波解 第137页 科学出版社</ref> <math>u(x,t)=\frac{105*a^2}{169*b*cosh^4(z)}+C1</math> <math>z=\frac{1}{2}*k*x-(18*b*k^5+C1*k)*t</math> <math>k=\sqrt{{\frac{a}{13*b}}}</math> ==tanh 行波解== 利用tanh 法,可得<ref>Graham W. Griffiths William E.Shiesser Traveling Wave Analysis of Partial Differential Equations p391-409 Academy Press</ref> <math>u=\frac{-c (-1+\tanh(1/2 (c (-x-x0+c t))}{(a)))}</math> ==Maple 软件包行波解== 利用[[Maple]]的TWSolutions软件包可得广义川原方程的一系列行波解:<ref>Inna Shingareva et al Solving Nonlinear Partial Differential Equations with Maple and Mathematica Springer, p 192</ref> [[File:Kawahara pde Maple TWSolution.JPG]] ==行波图== {| |[[File:Kawahara equation traveling wave plot 1.gif|thumb|Kawahara equation traveling wave plot]] |[[File:Kawahara equation traveling wave plot 2.gif|thumb|Kawahara equation traveling wave plot]] |[[File:Kawahara equation traveling wave plot 3.gif|thumb|Kawahara equation traveling wave plot]] |[[File:Kawahara equation traveling wave plot 4.gif|thumb|Kawahara equation traveling wave plot]] |} {| |[[File:Kawahara equation traveling wave plot 5.gif|thumb|Kawahara equation traveling wave plot]] |[[File:Kawahara equation traveling wave plot 6.gif|thumb|Kawahara equation traveling wave plot]] |[[File:Kawahara equation traveling wave plot 7.gif|thumb|Kawahara equation traveling wave plot]] |[[File:Kawahara equation traveling wave plot 8.gif|thumb|Kawahara equation traveling wave plot]] |} {| |[[File:Kawahara equation traveling wave plot 9.gif|thumb|Kawahara equation traveling wave plot]] |[[File:Kawahara equation traveling wave plot 10.gif|thumb|Kawahara equation traveling wave plot]] |[[File:Kawahara equation traveling wave plot 11.gif|thumb|Kawahara equation traveling wave plot]] |[[File:Kawahara equation traveling wave plot 12.gif|thumb|Kawahara equation traveling wave plot]] | |} ==参考文献== <references/> # *谷超豪 《[[孤立子]]理论中的[[达布变换]]及其几何应用》 上海科学技术出版社 # *阎振亚著 《复杂非线性波的构造性理论及其应用》 科学出版社 2007年 # 李志斌编著 《非线性数学物理方程的行波解》 科学出版社 #王东明著 《消去法及其应用》 科学出版社 2002 # *何青 王丽芬编著 《[[Maple]] 教程》 科学出版社 2010 ISBN 9787030177445 #Graham W. Griffiths William E.Shiesser Traveling Wave Analysis of Partial Differential p135 Equations Academy Press # Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,1997 #Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Springer. #Eryk Infeld and George Rowlands,Nonlinear Waves,Solitons and Chaos,Cambridge 2000 #Saber Elaydi,An Introduction to Difference Equationns, Springer 2000 #Dongming Wang, Elimination Practice,Imperial College Press 2004 # David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004 # George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759 {{非线性偏微分方程}} [[category:非线性偏微分方程]]
该页面使用的模板:
Template:非线性偏微分方程
(
查看源代码
)
返回
川原方程
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息