查看“︁峰值因數”︁的源代码
←
峰值因數
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
'''峰值因數'''又稱'''波峰因數'''('''crest factor''',簡寫 '''CF''',又稱'''peak-to-average ratio''',簡稱'''PAR''')是和[[波形]]有關的[[無因次量]],為波形的[[振幅]]再除以波形[[平方平均數|RMS]] (time-averaged)所得到的值。 :<math> C = {|x|_\mathrm{peak} \over x_\mathrm{rms}} </math> '''峰均功率比'''('''peak-to-average power ratio''',簡稱'''PAPR''')是另一個相關的無因次量,定義為振幅平方(表示峰值功率)除以RMS平方(表示平均功率)的比值<ref>{{cite web |title=Wireless 101: Peak to average power ratio (PAPR) |url=http://www.eetimes.com/design/microwave-rf-design/4017754/Wireless-101-Peak-to-average-power-ratio-PAPR- |access-date=2013-03-17 |archive-url=https://web.archive.org/web/20130221042545/http://eetimes.com/design/microwave-rf-design/4017754/Wireless-101-Peak-to-average-power-ratio-PAPR- |archive-date=2013-02-21 |dead-url=yes }}</ref>: :<math> \mathit{PAPR} = {{|x|_\mathrm{peak}}^2 \over {x_\mathrm{rms}}^2} = C^2 </math> 因一波形的振幅恆大於等於RMS值,因此峰值因數及峰均功率比的最小可能數值均為1,即峰均功率比 1:1 或 0dB。 == 常見波形的峰值因數 == 下表列出了常見[[波形]]的峰值因數。所有範例中的峰值都統一為 1。 {| class="wikitable" style="text-align:center;" ! 波形名稱 ! 波形圖 ! [[均方根|RMS]] 值 ! 峰值因數 ! 峰均功率比 (dB) |- | [[直流]] || || 1 || 1 || 0.0 dB |- | [[正弦波]] || [[Image:Simple sine wave.svg|100px]] || <math>{1 \over \sqrt{2}} \approx 0.707</math><ref name=ness>{{cite web|title=RMS and Average Values for Typical Waveforms |url=http://www.nessengr.com/techdata/rms/rms.html |archive-url=https://web.archive.org/web/20100123085330/http://www.nessengr.com/techdata/rms/rms.html |archive-date=2010-01-23 |url-status=dead }}</ref> || <math>\sqrt{2} \approx 1.414</math> || 3.01 dB |- | 正弦波經全波整流後 || [[Image:Simple full-wave rectified sine.svg|100px]] || <math>{1 \over \sqrt{2}} \approx 0.707</math><ref name=ness/> || <math>\sqrt{2} \approx 1.414</math> || 3.01 dB |- | 正弦波經半波整流後 || [[Image:Simple half-wave rectified sine.svg|100px]] || <math>{1 \over 2 } = 0.5</math><ref name=ness/> || <math>2 \,</math> || 6.02 dB |- | [[三角波]] || [[Image:Triangle wave.svg|100px]] || <math>{1 \over \sqrt{3}} \approx 0.577</math> || <math>\sqrt{3} \approx 1.732</math> || 4.77 dB |- | [[方波]] || [[Image:Square wave.svg|100px]] || 1 || 1 || 0 dB |- | [[脈衝寬度調變|PWM]] 訊號 <br/>V(t) ≥ 0.0 V|| [[Image:Pulse wide wave.svg|100px]] || <math>\sqrt{ \frac{t_1}{T}}</math><ref name=ness/> || <math>\sqrt{\frac{T}{t_1}}</math> || <math>20\log\mathord\left(\frac{T}{t_1}\right)</math> dB |- | [[QPSK]] || || 1 || 1 || 1.761 dB<ref>{{Cite book|url=http://kilyos.ee.bilkent.edu.tr/~signal/defevent/papers/cr1037.pdf|title=POWER RATIO DEFINITIONS AND ANALYSIS IN SINGLE CARRIER MODULATIONS|last1=Palicot|first1=Jacques|last2=Louët|first2=Yves|publisher=IETR/Supélec - Campus de Rennes|pages=2}}</ref> |- | [[8PSK]] || || || || 3.3 dB<ref name=modulation>{{Cite web | url=http://www.readbag.com/ece-ucsb-yuegroup-teaching-ece594bb-lectures-steer-rf-chapter1 | title=Read steer_rf_chapter1.pdf | access-date=2014-12-11 | archive-date=2016-03-22 | archive-url=https://web.archive.org/web/20160322185955/http://www.readbag.com/ece-ucsb-yuegroup-teaching-ece594bb-lectures-steer-rf-chapter1 | url-status=dead }}</ref> |- | [[Phase-shift keying#π/4-QPSK|{{frac|π|4}}-DQPSK]] || || || || 3.0 dB<ref name=modulation /> |- | [[OQPSK]] || || || || 3.3 dB<ref name=modulation /> |- | [[8VSB]] || || || || 6.5–8.1 dB<ref>{{cite web |url=http://broadcastengineering.com/mag/broadcasting_transitioning_transmitters_cofdm/ |title=Transitioning transmitters to COFDM |access-date=2009-06-17 |url-status=dead |archive-url=https://web.archive.org/web/20090821020320/http://broadcastengineering.com/mag/broadcasting_transitioning_transmitters_cofdm/ |archive-date=2009-08-21 }}</ref> |- | [[QAM|64QAM]] || || <math>\sqrt{ \frac{3}{7} }</math> || <math>\sqrt{ \frac{7}{3} } \approx 1.528</math> || 3.7 dB<ref name="ChatzimisiosVerikoukis2011">{{cite book|url=https://books.google.com/books?id=tSwKZxtx82gC|title=Mobile Lightweight Wireless Systems: Second International ICST Conference, Mobilight 2010, May 10-12, 2010, Barcelona, Spain, Revised Selected Papers|author1=R. Wolf|author2=F. Ellinger|author3=R.Eickhoff|author4=Massimiliano Laddomada|author5=Oliver Hoffmann|date=14 July 2011|publisher=Springer|isbn=978-3-642-16643-3|editor=Periklis Chatzimisios|page=164|access-date=13 December 2012}}</ref> |- | <math>\infty</math>-QAM || || <math>{1 \over \sqrt{3}} \approx 0.577</math> || <math>\sqrt{3} \approx 1.732</math> || 4.8 dB<ref name="ChatzimisiosVerikoukis2011"/> |- | [[WCDMA]] 下行載波 || || || || 10.6 dB |- | [[OFDM]] || || || 4 || ~12 dB |- | [[GMSK]] || || 1 || 1 || 0 dB |- | [[高斯噪声]] || || [[standard deviation|<math>\sigma</math>]]<ref>[http://www.ti.com/lit/ml/sloa082/sloa082.pdf Op Amp Noise Theory and Applications] {{webarchive|url=https://web.archive.org/web/20141130224524/http://www.ti.com/lit/ml/sloa082/sloa082.pdf |date=2014-11-30 }} - 10.2.1 rms versus P-P Noise</ref><ref>[http://users.ece.gatech.edu/mleach/ece6416/Labs/exp01.pdf Chapter 1 First-Order Low-Pass Filtered Noise] - "The standard deviation of a Gaussian noise voltage is the root-mean-square or rms value of the voltage."</ref> || <math>\infty</math><ref>[http://noisewave.com/faq.pdf Noise: Frequently Asked Questions] - "Noise theoretically has an unbounded distribution so that it should have an infinite crest factor"</ref><ref>Telecommunications Measurements, Analysis, and Instrumentation, Kamilo Feher, section 7.2.3 Finite Crest Factor Noise</ref> || <math>\infty</math> dB |- | 週期性[[啁啾|啁啾(Chirp)]] || || <math>{1 \over \sqrt{2}} \approx 0.707</math> || <math>\sqrt{2} \approx 1.414</math> || 3.01 dB |} 附註: # 表中 QPSK, QAM, WCDMA 的峰值因數是進行可靠通訊時的典型數值,並非理論上的峰值因數數值,後者可能較高。 == 相關條目 == * [[波形因數|波形因數 (Form Factor)]] ==參考資料== {{reflist}} {{數學小作品}} [[Category:放大器]]
该页面使用的模板:
Template:Cite book
(
查看源代码
)
Template:Cite web
(
查看源代码
)
Template:Frac
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:Webarchive
(
查看源代码
)
Template:數學小作品
(
查看源代码
)
返回
峰值因數
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息