查看“︁小q拉盖尔多项式”︁的源代码
←
小q拉盖尔多项式
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
[[File:Little q-Laguerre polynomials.gif|thumb|4th order Little q-Laguerre polynomials]] '''小q拉盖尔多项式'''是一个以[[基本超几何函数]]定义的[[正交多项式]] :<math>\displaystyle p_n(x;a|q) = {}_2\phi_1(q^{-n},0;aq;q,qx) = \frac{1}{(a^{-1}q^{-n};q)_n}{}_2\phi_0(q^{-n},x^{-1};;q,x/a) </math> ==极限关系== ;大q拉盖尔多项式→小q拉盖尔多项式 在大q拉盖尔多项式中,令<math>x \to bqx</math>,并令<math>b \to \infty</math>即得小q拉盖尔多项式 <math>\lim_{b \to \infty}P_{n}(bqx;a,b;q)=p_{n}(x;a|q)</math> [[仿射Q克拉夫楚克多项式]]→ 小q拉盖尔多项式: <math>\lim_{a \to 1}=K_{n}^{aff}(q^{x-N};p,N|q)=p_{n}(q^x;p,q)</math> 令小q拉盖尔多项式 <math>a=q^a</math> <math>x=(1-q)*x</math>,然后令q→1 即得[[拉盖尔多项式]] <math>\lim_{q \to 1}P_{a}(1-q)x;q^a|q)=\frac{L_{n}^{(a)}(x)}{L_{n}^{(a)}(0)}</math> ;验证 9阶小q拉盖尔多项式→拉盖尔多项式 作上述代换, <math> P_{a}(1-q)x;q^a|q) =1+{\frac {qx}{1-{q}^{\alpha}q}}-{\frac {x}{{q}^{8} \left( 1-{q}^{\alpha}q \right) }}</math> <math>+ \left( 1-{q}^{-9} \right) \left( 1-{q}^{-8} \right) {q}^{2} \left( 1-q \right) {x}^{2} \left( 1-{q}^{2} \right) ^ {-1} \left( 1-{q}^{\alpha}q \right) ^{-1} \left( 1-{q}^{\alpha}{q}^{2} \right) ^{-1} </math><math> + \left( 1-{q}^{-9} \right) \left( 1-{q}^{-8} \right) \left( 1-{q}^{-7} \right) {q}^{3} \left( 1-q \right) ^{2}{x}^{3} \left( 1-{q}^{2} \right) ^{-1} </math><math>\left( 1-{q}^{3} \right) ^{-1} \left( 1-{q}^{\alpha}q \right) ^{-1} \left( 1-{q}^{\alpha}{q}^{2} \right) ^{- 1} \left( 1-{q}^{\alpha}{q}^{3} \right) ^{-1}+\cdots </math> 求q→1极限得 [[File:LimqLaguerre.JPG|860px]] 令a=3,得 <math> (1-{\frac {9}{4}}x+{\frac {9}{5}}{x}^{2}-{\frac {7}{10}}{x}^{3}+{ \frac {3}{20}}{x}^{4}-{\frac {3}{160}}{x}^{5}+{\frac {1}{720}}{x}^{6}- {\frac {1}{16800}}{x}^{7}+{\frac {1}{739200}}{x}^{8}-{\frac {1}{ 79833600}}{x}^{9}) </math> 另一方面 <math>\frac{L_{n}^{(3)}(x)}{L_{n}^{(3)}(0)}</math> =<math> (1-{\frac {9}{4}}x+{\frac {9}{5}}{x}^{2}-{\frac {7}{10}}{x}^{3}+{ \frac {3}{20}}{x}^{4}-{\frac {3}{160}}{x}^{5}+{\frac {1}{720}}{x}^{6}- {\frac {1}{16800}}{x}^{7}+{\frac {1}{739200}}{x}^{8}-{\frac {1}{ 79833600}}{x}^{9}) </math> 二者显然相等 QED ==图集== {| |[[File:LITTLE Q-LAGUERRE POLYNOMIALS ABS COMPLEX 3D MAPLE PLOT.gif|thumb|LITTLE Q-LAGUERRE POLYNOMIALS ABS COMPLEX 3D MAPLE PLOT]] |[[File:LITTLE Q-LAGUERRE POLYNOMIALS IM COMPLEX 3D MAPLE PLOT.gif|thumb|LITTLE Q-LAGUERRE POLYNOMIALS IM COMPLEX 3D MAPLE PLOT]] |[[File:LITTLE Q-LAGUERRE POLYNOMIALS RE COMPLEX 3D MAPLE PLOT.gif|thumb|LITTLE Q-LAGUERRE POLYNOMIALS RE COMPLEX 3D MAPLE PLOT]] |} {| |[[File:LITTLE Q-LAGUERRE POLYNOMIALS ABS DENSITY MAPLE PLOT.gif|thumb|LITTLE Q-LAGUERRE POLYNOMIALS ABS DENSITY MAPLE PLOT]] |[[File:LITTLE Q-LAGUERRE POLYNOMIALS IM DENSITY MAPLE PLOT.gif|thumb|LITTLE Q-LAGUERRE POLYNOMIALS IM DENSITY MAPLE PLOT]] |[[File:LITTLE Q-LAGUERRE POLYNOMIALS RE DENSITY MAPLE PLOT.gif|thumb|LITTLE Q-LAGUERRE POLYNOMIALS RE DENSITY MAPLE PLOT]] |} ==参考文献== *{{Citation | last1=Chihara | first1=Theodore Seio | title=An introduction to orthogonal polynomials | url=https://books.google.com/books?id=IkCJSQAACAAJ | publisher=Gordon and Breach Science Publishers | location=New York | series=Mathematics and its Applications | isbn=978-0-677-04150-6 | mr=0481884 |id= Reprinted by Dover 2011 | year=1978 | volume=13}} *{{Citation | last1=Gasper | first1=George | last2=Rahman | first2=Mizan | title=Basic hypergeometric series | publisher=[[Cambridge University Press]] | edition=2nd | series=Encyclopedia of Mathematics and its Applications | isbn=978-0-521-83357-8 | mr=2128719 | year=2004 | volume=96}} *{{Citation | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010}} *{{dlmf|id=18|title=Chapter 18: Orthogonal Polynomials|first=Tom H. |last=Koornwinder|first2=Roderick S. C.|last2= Wong|first3=Roelof |last3=Koekoek||first4=René F. |last4=Swarttouw}} *{{Citation | last1=Van Assche | first1=Walter | last2=Koornwinder | first2=Tom H. | title=Asymptotic behaviour for Wall polynomials and the addition formula for little q-Legendre polynomials | doi=10.1137/0522019 | mr=1080161 | year=1991 | journal=SIAM Journal on Mathematical Analysis | issn=0036-1410 | volume=22 | issue=1 | pages=302–311 | url=https://ir.cwi.nl/pub/1603 | accessdate=2024-06-17 | archive-date=2024-07-21 | archive-url=https://web.archive.org/web/20240721032748/https://ir.cwi.nl/pub/1603 | dead-url=no }} *{{Citation | last1=Wall | first1=H. S. | title=A continued fraction related to some partition formulas of Euler | jstor=2303599 | mr=0003641 | year=1941 | journal=[[American Mathematical Monthly|The American Mathematical Monthly]] | issn=0002-9890 | volume=48 | issue=2 | pages=102–108| doi=10.1080/00029890.1941.11991074 }} {{q超几何函数}} [[Category:正交多项式]]
该页面使用的模板:
Template:Citation
(
查看源代码
)
Template:Dlmf
(
查看源代码
)
Template:Q超几何函数
(
查看源代码
)
返回
小q拉盖尔多项式
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息