查看“︁多德-布洛-米哈伊洛夫方程”︁的源代码
←
多德-布洛-米哈伊洛夫方程
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
'''多德-布洛-米哈伊洛夫方程'''(Dodd-Bullough-Mikhailov equation)是一个非线性偏微分方程<ref>李志斌编著 《非线性数学物理方程的行波解》 第105-107页,科学出版社 2008</ref>。 <math>u_{xt}+\alpha*e^u+\gamma*e^{-2*u} = 0</math> ==行波解== 多德-布洛-米哈伊洛夫方程不是函数u的多项式形式,因此必须做代换: <math>v=e^u</math>, 变为: <math>v*v_{xt}-v_{t}*v_{x}+\alpha*v^3+\gamma = 0</math> 得到函数v(x,t)的行波解: <math>v(x, t) = (1/2)*\gamma^(1/3)+(3/2)*\gamma^(1/3)*cot(_C1+_C2*x-(3/4)*\gamma^(1/3)*t/_C2)^2</math> <math>v(x, t) = (1/2)*\gamma^(1/3)-(3/2)*\gamma^(1/3)*coth(_C1+_C2*x+(3/4)*\gamma^(1/3)*t/_C2)^2</math> <math>v(x, t) = (1/2)*\gamma^(1/3)+(3/2)*\gamma^(1/3)*tan(_C1+_C2*x-(3/4)*\gamma^(1/3)*t/_C2)^2</math> <math>v(x, t) = (1/2)*\gamma^(1/3)-(3/2)*\gamma^(1/3)*tanh(_C1+_C2*x+(3/4)*\gamma^(1/3)*t/_C2)^2</math> <math>v(x, t) = -(1/4)*\gamma^(1/3)-(1/4*I)*\sqrt(3)*\gamma^(1/3)+(-(3/4)*\gamma^(1/3)-(3/4*I)*\sqrt(3)*\gamma^(1/3))*cot(_C1+_C2*x+(3/4)*((1/2)*\gamma^(1/3)+(1/2*I)*\sqrt(3)*\gamma^(1/3))*t/_C2)^2</math> <math>v(x, t) = -(1/4)*\gamma^(1/3)-(1/4*I)*\sqrt(3)*\gamma^(1/3)+(-(3/4)*\gamma^(1/3)-(3/4*I)*\sqrt(3)*\gamma^(1/3))*tan(_C1+_C2*x+(3/4)*((1/2)*\gamma^(1/3)+(1/2*I)*\sqrt(3)*\gamma^(1/3))*t/_C2)^2</math> <math>v(x, t) = -(1/4)*\gamma^(1/3)-(1/4*I)*\sqrt(3)*\gamma^(1/3)+((3/4)*\gamma^(1/3)+(3/4*I)*\sqrt(3)*\gamma^(1/3))*coth(_C1+_C2*x+(3/4)*(-(1/2)*\gamma^(1/3)-(1/2*I)*\sqrt(3)*\gamma^(1/3))*t/_C2)^2</math> <math>v(x, t) = -(1/4)*\gamma^(1/3)-(1/4*I)*\sqrt(3)*\gamma^(1/3)+((3/4)*\gamma^(1/3)+(3/4*I)*\sqrt(3)*\gamma^(1/3))*tanh(_C1+_C2*x+(3/4)*(-(1/2)*\gamma^(1/3)-(1/2*I)*\sqrt(3)*\gamma^(1/3))*t/_C2)^2</math> 作反变换: <math>u(x,t)=ln(v(x,t))</math> 即得多德-布洛-米哈伊洛夫方程的行波解: <math>u(x, t) =ln( (1/2)*\gamma^(1/3)+(3/2)*\gamma^(1/3)*cot(_C1+_C2*x-(3/4)*\gamma^(1/3)*t/_C2)^2)</math> <math>u(x, t) =ln( (1/2)*\gamma^(1/3)-(3/2)*\gamma^(1/3)*coth(_C1+_C2*x+(3/4)*\gamma^(1/3)*t/_C2)^)</math> <math>u(x, t) =ln( (1/2)*\gamma^(1/3)+(3/2)*\gamma^(1/3)*tan(_C1+_C2*x-(3/4)*\gamma^(1/3)*t/_C2)^2)</math> <math>u(x, t) =ln( (1/2)*\gamma^(1/3)-(3/2)*\gamma^(1/3)*tanh(_C1+_C2*x+(3/4)*\gamma^(1/3)*t/_C2)^2)</math> <math>u(x, t) =ln( -(1/4)*\gamma^(1/3)-(1/4*I)*\sqrt(3)*\gamma^(1/3)+(-(3/4)*\gamma^(1/3)-(3/4*I)*\sqrt(3)*\gamma(1/3))*cot(_C1+_C2*x+(3/4)*((1/2)*\gamma^(1/3)+(1/2*I)*\sqrt(3)*\gamma^(1/3))*t/_C2)^2)</math> <math>u(x, t) =ln( -(1/4)*\gamma^(1/3)-(1/4*I)*\sqrt(3)*\gamma^(1/3)+(-(3/4)*\gamma^(1/3)-(3/4*I)*\sqrt(3)*\gamma^(1/3))*tan(_C1+_C2*x+(3/4)*((1/2)*\gamma^(1/3)+(1/2*I)*\sqrt(3)*\gamma^(1/3))*t/_C2)^2)</math> <math>u(x, t) =ln( -(1/4)*\gamma^(1/3)-(1/4*I)*\sqrt(3)*\gamma^(1/3)+((3/4)*\gamma^(1/3)+(3/4*I)*\sqrt(3)*\gamma^(1/3))*coth(_C1+_C2*x+(3/4)*(-(1/2)*\gamma^(1/3)-(1/2*I)*\sqrt(3)*\gamma^(1/3))*t/_C2)^2)</math> <math>u(x, t) =ln( -(1/4)*\gamma^(1/3)-(1/4*I)*\sqrt(3)*\gamma^(1/3)+((3/4)*\gamma^(1/3)+(3/4*I)*\sqrt(3)*\gamma^(1/3))*tanh(_C1+_C2*x+(3/4)*(-(1/2)*\gamma^(1/3)-(1/2*I)*\sqrt(3)*\gamma^(1/3))*t/_C2)^2)</math> <math></math> <math></math> ==行波图== {| |[[File:Dodd-Bullough-Mikhailov equation traveling wave plot10.gif|thumb|Dodd-Bullough-Mikhailov equation traveling wave plot]] |[[File:Dodd-Bullough-Mikhailov equation traveling wave plot14.gif|thumb|Dodd-Bullough-Mikhailov equation traveling wave plot]] |[[File:Dodd-Bullough-Mikhailov equation traveling wave plot15.gif|thumb|Dodd-Bullough-Mikhailov equation traveling wave plot]] |[[File:Dodd-Bullough-Mikhailov equation traveling wave plot16.gif|thumb|Dodd-Bullough-Mikhailov equation traveling wave plot]] |} {| |[[File:Dodd-Bullough-Mikhailov equation traveling wave plot17.gif|thumb|Dodd-Bullough-Mikhailov equation traveling wave plot]] |[[File:Dodd-Bullough-Mikhailov equation traveling wave plot19.gif|thumb|Dodd-Bullough-Mikhailov equation traveling wave plot]] |[[File:Dodd-Bullough-Mikhailov equation traveling wave plot2.gif|thumb|Dodd-Bullough-Mikhailov equation traveling wave plot]] |[[File:Dodd-Bullough-Mikhailov equation traveling wave plot20.gif|thumb|Dodd-Bullough-Mikhailov equation traveling wave plot]] |} {| |[[File:Dodd-Bullough-Mikhailov equation traveling wave plot21.gif|thumb|Dodd-Bullough-Mikhailov equation traveling wave plot]] |[[File:Dodd-Bullough-Mikhailov equation traveling wave plot3.gif|thumb|Dodd-Bullough-Mikhailov equation traveling wave plot]] |[[File:Dodd-Bullough-Mikhailov equation traveling wave plot4.gif|thumb|Dodd-Bullough-Mikhailov equation traveling wave plot]] |[[File:Dodd-Bullough-Mikhailov equation traveling wave plot5.gif|thumb|Dodd-Bullough-Mikhailov equation traveling wave plot]] |} {| |[[File:Dodd-Bullough-Mikhailov equation traveling wave plot8.gif|thumb|Dodd-Bullough-Mikhailov equation traveling wave plot]] |[[File:Dodd-Bullough-Mikhailov equation traveling wave plot9.gif|thumb|Dodd-Bullough-Mikhailov equation traveling wave plot]] | | |} ==参考文献== <references/> # *谷超豪 《[[孤立子]]理论中的[[达布变换]]及其几何应用》 上海科学技术出版社 # *阎振亚著 《复杂非线性波的构造性理论及其应用》 科学出版社 2007年 # 李志斌编著 《非线性数学物理方程的行波解》 科学出版社 #王东明著 《消去法及其应用》 科学出版社 2002 # *何青 王丽芬编著 《[[Maple]] 教程》 科学出版社 2010 ISBN 9787030177445 #Graham W. Griffiths William E.Shiesser Traveling Wave Analysis of Partial Differential p135 Equations Academy Press # Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,1997 #Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Springer. #Eryk Infeld and George Rowlands,Nonlinear Waves,Solitons and Chaos,Cambridge 2000 #Saber Elaydi,An Introduction to Difference Equationns, Springer 2000 #Dongming Wang, Elimination Practice,Imperial College Press 2004 # David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004 # George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759 {{非线性偏微分方程}} [[category:非线性偏微分方程]]
该页面使用的模板:
Template:非线性偏微分方程
(
查看源代码
)
返回
多德-布洛-米哈伊洛夫方程
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息