查看“︁多卷波混沌吸引子”︁的源代码
←
多卷波混沌吸引子
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
'''多卷波混沌吸引子'''(N scroll chaotic attractor)也称'''N卷波吸引子''',是實際[[混沌理论|混沌]]電路(一般而言,是[[蔡氏電路]])加上一個[[非線性]]電阻(例如{{le|蔡氏二極體|Chua's Diode}})而產生的[[奇異吸引子]]。多卷波混沌吸引子可以用三個非線性[[常微分方程]]以及三段的片段連續線性方程來描述。這可以簡化系統的數值模擬,也因為蔡氏電路的設計簡單,也很容易實作。 多卷波混沌吸引子在保密数码通讯,同步预测等方面有重要应用。 ==超混沌陈氏吸引子== 陈氏系统: <math>\frac{\mathrm{d}x(t)}{\mathrm{d}t}=a*(y(t)-x(t)), </math> <math>\frac{\mathrm{d}y(t)}{\mathrm{d}t}=(c-a)*x(t)-x(t)*f+c*y(t), </math> <math>\frac{\mathrm{d}z(t)}{\mathrm{d}t}=x(t)*y(t)-b*z(t)</math> 其中 <math>f</math> 为调控函数:<ref>XINZHI LIU MULTI-SCROLL CHAOTIC AND HYPERCHAOTIC ATTRACTORS GENERATED FROM CHEN SYSTEM, International Journal of Bifurcation and Chaos, Vol. 22, No. 2 (2012) 1250033-2</ref> ===正弦调控函数=== [[File:51 frame N scroll modified Chen attractor.gif]] [[File:51 frame N scroll modified Chen attractor x axe vs time.gif|thumb|500px|51 frame N scroll modified Chen attractor x axe vs t]] <math>f=g*z(t)-h*\sin(z(t))</math> 参数:<syntaxhighlight>:= a = 35, c = 28, b = 3, g = 1, h = -25..25;</syntaxhighlight> 初始条件:<syntaxhighlight>initv := x(0) = 1, y(0) = 1, z(0) = 14;</syntaxhighlight> 利用[[Maple]]中{{le|龙格-库塔-菲尔伯格法|Runge–Kutta–Fehlberg method}}(Runge–Kutta–Fehlberg法,简称 RKF45)可得数字解并做图。 {| class="wikitable" |- ! h !! 卷波数 |- | 5 || 4 |- | 8 || 6 |- | 22 || 14 |- |} ===延时正弦函数=== [[File:N scroll generalized Chen attractor 41 frames.gif|400px|thumb|right|N scroll attractor based on Chen with sine and tau]] <math> f = d0*z(t) + d1*z(t - \tau ) - d2*\sin(z(t - \tau ))</math> 参数:<syntaxhighlight>params := a = 35, c = 28, b = 3, d0 = 1, d1 = 1, d2 = -20..20, tau = .2;</syntaxhighlight> 初始条件:<syntaxhighlight>initv := x(0) = 1, y(0) = 1, z(0) = 14;</syntaxhighlight> 利用[[Maple]]中[[龙格-库塔-菲尔伯格法]](Runge–Kutta–Fehlberg法,简称 RKF45)可得数字解并做图。 ==超混沌蔡氏吸引子== 2001年Tang等提出改进的蔡氏吸引子系统:.<ref>{{cite journal|last=Chen|first=Guanrong|coauthors=Jinhu Lu|title=GENERATING MULTISCROLL CHAOTIC ATTRACTORS: THEORIES, METHODS AND APPLICATIONS|journal=International Journal of Bifurcation and Chaos|year=2006|volume=16|issue=4|pages=793-794|url=http://www.ee.cityu.edu.hk/~gchen/pdf/LC-IJBC06-survey.pdf|accessdate=2012-02-16|archive-date=2012-01-06|archive-url=https://web.archive.org/web/20120106122526/http://www.ee.cityu.edu.hk/~gchen/pdf/LC-IJBC06-survey.pdf|dead-url=no}}</ref> <math>\frac{\mathrm{d}x(t)}{\mathrm{d}t}= \alpha*(y(t)-h)</math> <math>\frac{\mathrm{d}y(t)}{\mathrm{d}t}=x(t)-y(t)+z(t)</math> <math>\frac{\mathrm{d}z(t)}{\mathrm{d}t}=-\beta*y(t)</math> 其中 <math>h := -b*sin(\frac{\pi*x(t)}{2*a}+d)</math> 参数:<syntaxhighlight>params := alpha = 10.82, beta = 14.286, a = 1.3, b = .11, c = 7, d = 0;</syntaxhighlight> 初始条件:<syntaxhighlight>initv := x(0) = 1, y(0) = 1, z(0) = 0;</syntaxhighlight> 利用[[Maple]]中[[龙格-库塔-菲尔伯格法]](Runge–Kutta–Fehlberg法,简称 RKF45)可得数字解并做图: [[File:9 scroll modified Chua attractor.png|thumb|center|500px|alt=9 scroll|9 卷波 超混沌蔡氏吸引子]] [[File:9 scroll modified Chua attractor xt plot.png|thumb|center|500px|9 卷波 超混沌蔡氏吸引子]] ==延龄草型混沌吸引子== [[File:Trillium attractor.png|thumb|right|300px|延龄草型混沌吸引子]] 1993年 Miranda & Stone 提出下列方程组:<ref>J.Liu and G Chen p834</ref> <math>\frac{\mathrm{d}x(t)}{\mathrm{d}t} = 1/3*(-(a+1)*x(t)+a-c+z(t)*y(t))+((1-a)*(x(t)^2-y(t)^2)+(2*(a+c-z(t)))*x(t)*y(t))</math><math>*\frac{1}{3*\sqrt{x(t)^2+y(t)^2}}</math> <math>\frac{\mathrm{d}y(t)}{\mathrm{d}t}= 1/3*((c-a-z(t))*x(t)-(a+1)*y(t))+((2*(a-1))*x(t)*y(t)+(a+c-z(t))*(x(t)^2-y(t)^2))</math><math>*\frac{1}{3*\sqrt{x(t)^2+y(t)^2}}</math> <math>\frac{\mathrm{d}z(t)}{\mathrm{d}t} = 1/2*(3*x(t)^2*y(t)-y(t)^3)-b*z(t)</math> 参数:<math> a = 10,\quad b = \frac{8}{3}, \quad c = \frac{137}{5}</math> 初始条件:<math>x(0) = -8, \quad y(0) = 4, \quad z(0) = 10</math> 利用[[Maple]]中[[龙格-库塔-菲尔伯格法]](Runge–Kutta–Fehlberg法,简称 RKF45)可得数字解并做图: ==PWL 杜芬混沌吸引子== 2000年Aziz Alaoui 提出 PWL Duffing 方程:<ref>J.Lu et al p837</ref>。 PWL 杜芬方程: <math>\frac{\mathrm{d}x(t)}{\mathrm{d}t}=y(t)</math> <math>\frac{\mathrm{d}y(t)}{\mathrm{d}t}=-m1*x(t)-(1/2*(m0-m1))*(|x(t)+1|-|x(t)-1|)-e*y(t)+\gamma*cos(\omega*t)</math> 参数:<syntaxhighlight>params := e = .25, gamma = .14+(1/20)*i, m0 = -0.845e-1, m1 = .66, omega = 1; c := (.14+(1/20)*i),i=-25..25;</syntaxhighlight> 初始条件:<syntaxhighlight>initv := x(0) = 0, y(0) = 0;</syntaxhighlight> 利用[[Maple]]中[[龙格-库塔-菲尔伯格法]](Runge–Kutta–Fehlberg法,简称 RKF45)可得数字解并做图: [[File:PWL Duffing chaotic attractor xy plot.gif|thumb|center|300px|PWL Duffing chaotic attractor xy plot]] [[File:PWL Duffing chaotic attractor plot.gif|thumb|300px|center|PWL Duffing chaotic attractor plot]] ==参考文献== {{reflist}} ==外部連結== *[http://www.chuacircuits.com/howtobuild4.php The double-scroll attractor and Chua's circuit] {{Wayback|url=http://www.chuacircuits.com/howtobuild4.php |date=20200217183104 }} * {{cite journal |last1 = Lozi |first1 = R. |last2 = Pchelintsev |first2 = A.N. |title = A new reliable numerical method for computing chaotic solutions of dynamical systems: the Chen attractor case |journal = International Journal of Bifurcation and Chaos |year = 2015 |volume = 25 |issue = 13 |pages = 1550187 |doi = 10.1142/S0218127415501874 |url = https://hal.archives-ouvertes.fr/hal-01323625/document |ref = harv |access-date = 2020-10-08 |archive-date = 2019-05-02 |archive-url = https://web.archive.org/web/20190502151350/https://hal.archives-ouvertes.fr/hal-01323625/document |dead-url = no }} {{吸引子}} {{混沌理论}} [[category:非线性常微分方程]] [[category:混沌理论]] [[Category:吸子]]
该页面使用的模板:
Template:Cite journal
(
查看源代码
)
Template:Le
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:Wayback
(
查看源代码
)
Template:吸引子
(
查看源代码
)
Template:混沌理论
(
查看源代码
)
返回
多卷波混沌吸引子
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息