查看“︁团宽”︁的源代码
←
团宽
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
[[File:Clique-width construction.svg|thumb|upright=1.35|通过不交并、重标记与标签联接,构建团宽为3的[[距离遗传图]]。顶点标签用颜色表示。]] [[图论]]中,[[图 (数学)|图]]''G''的'''团宽'''(clique-width)是描述图的结构复杂性的参数,与[[树宽]]密切相关,但对[[稠密图]]来说可以很小。 团宽的定义是通过以下4种操作,构造''G''所需的最少[[图标号|标号]]数: # 创建标签为''i''的新顶点''v'',记作<math>i(v)</math>; # 两有标图''G''、''H''的[[图的不交并|不交并]],记作<math>G \oplus H</math>; # 用边连接标''i''的每个顶点与标''j''的每个顶点,记作<math>\eta(i,\ j),\ i\ne j</math>; # 将标签''i''改为标签''j'',记作<math>\rho(i,\ j)</math> 团宽有界图包括[[余图]]与[[距离遗传图]]。在无界时计算团宽是[[NP困难]]的,而有界时能否在[[多项式时间]]内计算团宽也是未知的,不过已经有一些高效的团宽[[近似算法]]。 基于这些算法与[[古赛尔定理]],很多对任意图来说NP难的图优化问题都可在团宽有界图上快速求解或逼近。 Courcelle、Engelfriet、Rozenberg在1990年{{sfnp|Courcelle|Engelfriet|Rozenberg|1993}}、{{harvtxt|Wanke|1994}}提出了作为团宽概念基础的构造序列。“团宽”一词始见于{{harvtxt|Chlebíková|1992}},是用于另一个概念。1993年,这个词有了现在的含义。{{sfnp|Courcelle|1993}} ==特殊图类== [[余图]]是团宽不大于2的图。{{sfnp|Courcelle|Olariu|2000}}[[距离遗传图]]的团宽不大于3。单位区间图的团宽无界(基于网格结构)。{{sfnp|Golumbic|Rotics|2000}} 相似地,二分置换图团宽无界(基于相似的网格结构)。{{sfnp|Brandstädt|Lozin|2003}} 余图是没有任何导出子图与4顶点路径同构的图,根据这特征,对许多由禁导出子图定义的图类的团宽进行了分类。<ref>{{harvtxt|Brandstädt|Dragan|Le|Mosca|2005}}; {{harvtxt|Brandstädt|Engelfriet|Le|Lozin|2006}}.</ref> 其他团宽有界图如''k''值有界的[[叶幂|''k''叶幂]],它们是树''T''的叶在[[图的次幂|幂]]<math>T^k</math>中的[[导出子图]]。然而,指数无界的叶幂不具有有界团宽。<ref>{{harvtxt|Brandstädt|Hundt|2008}}; {{harvtxt|Gurski|Wanke|2009}}.</ref> ==界== {{harvtxt|Courcelle|Olariu|2000}}、{{harvtxt|Corneil|Rotics|2005}}证明,特定图的团宽有下列边界: *若图的团宽不超过''k'',则所有[[导出子图]]也不超过''k''。<ref>{{harvtxt|Courcelle|Olariu|2000}}, Corollary 3.3.</ref> * ''k''团宽图的[[补图]]的团宽不大于2''k''。<ref>{{harvtxt|Courcelle|Olariu|2000}}, Theorem 4.1.</ref> * ''w''[[树宽]]图的团宽不大于<math>3\cdot 2^{w-1}</math>。此约束中的指数依赖是必须的:存在团宽比树宽大指数级的图。<ref>{{harvtxt|Corneil|Rotics|2005}}, strengthening {{harvtxt|Courcelle|Olariu|2000}}, Theorem 5.5.</ref>换一种说法,团宽有界图可能有无界的树宽,例如''n''顶点[[完全图]]的团宽为2,而树宽为<math>n-1</math>。而没有[[完全二分图]]<math>K_{t,\ t}</math>为子图的''k''团宽图,树宽不大于<math>3k(t-1)-1</math>。因此,所有[[稠密图|稀疏图]]族,树宽有界等价于团宽有界。{{sfnp|Gurski|Wanke|2000}} * [[秩宽]]的上下界都受团宽约束:<math>\text{秩宽}\le \text{团宽}\le 2^{\text{秩宽}+1}</math>。{{sfnp|Oum|Seymour|2006}}}} 另外,若图''G''的团宽为''k'',则[[图的次幂]]<math>G^c</math>的团宽不大于<math>2kc^k</math>。{{sfnp|Todinca|2003}}从树宽得出的团宽约束与图幂的团宽约束存在指数级差距,不过约束并不互相复合: 若图''G''的树宽为''w'',则<math>G^c</math>的团宽不大于<math>2(c+1)^{w+1}-2</math>,只是树宽的单指数级。{{sfnp|Gurski|Wanke|2009}} ==计算复杂度== {{unsolved|数学|能否在多项式时间内识别团宽有界图?}} 很多对一般图来说[[NP困难]]的优化问题,限定了团宽有界、已知图的构造序列的条件后可用[[动态规划]]高效解决。{{sfnp|Cogis|Thierry|2005}}{{sfnp|Courcelle|Makowsky|Rotics|2000}}特别是,根据[[古赛尔定理]]的一种形式,可用MSO<sub>1</sub>[[一元二阶逻辑]](允许量化顶点集的逻辑形式)表达的[[图属性]],对团宽有界图都有线性时间算法。{{sfnp|Courcelle|Makowsky|Rotics|2000}} 已知构造序列时,也有可能在多项式时间内为团宽有界图找到最优[[图着色]]或[[哈密顿路径|哈密顿环]],但多项式的指数随团宽增加,计算复杂度理论的证据表明这种依赖可能是必要的。{{sfnp|Fomin|Golovach|Lokshtanov|Saurabh|2010}} 团宽有界图是[[χ-有界]]的,这是说它们的色数最多是其最大团大小的函数。{{sfnp|Dvořák|Král'|2012}} 运用基于[[裂 (图论)|裂分解]]的算法,可在多项式时间内识别出团宽为3的图,并找到构造序列。{{sfnp|Corneil|Habib|Lanlignel|Reed|2012}} 对团宽无界图,精确计算团宽是[[NP困难]]的,获得亚线性加性误差的近似也是NP困难的。{{sfnp|Fellows|Rosamond|Rotics|Szeider|2009}}而团宽有界时,就可能在多项式时间内<ref>{{harvtxt|Oum|Seymour|2006}}; {{harvtxt|Hliněný|Oum|2008}}; {{harvtxt|Oum|2008}}; {{harvtxt|Fomin|Korhonen|2022}}.</ref>(特别是在顶点数的平方时间内{{sfnp|Fomin|Korhonen|2022}})获得宽度(比实际团宽大指数级)有界的构造序列。能否在[[固定参数可解]]时间内算得确切团宽或更优的近似值、能否在多项式时间内算得团宽的每个固定边界、能否在多项式时间内识别团宽为4的图,目前仍是未知的。{{sfnp|Fellows|Rosamond|Rotics|Szeider|2009}} ==相关宽参数== 有界团宽图理论类似于有界[[树宽]]图,不同的是,团宽有界图可以[[稠密图|稠密]]。若图族的团宽有界,则要么其树宽也有界,要么每个[[完全二分图]]都是图族中某个图的子图。{{sfnp|Gurski|Wanke|2000}}树宽与团宽还通过[[线图]]理论联系在一起:当且仅当图族的线图团宽都有界,图族的树宽有界。{{sfnp|Gurski|Wanke|2007}} 团宽有界图的[[孪宽]](twin-width)也有界。{{sfnp|Bonnet|Kim|Thomassé|Watrigant|2022}} ==注释== {{reflist|30em}} ==参考文献== {{refbegin|30em}} *{{citation | last1 = Bonnet | first1 = Édouard | last2 = Kim | first2 = Eun Jung | last3 = Thomassé | first3 = Stéphan | last4 = Watrigant | first4 = Rémi | arxiv = 2004.14789 | doi = 10.1145/3486655 | issue = 1 | journal = [[Journal of the ACM]] | mr = 4402362 | page = A3:1–A3:46 | title = Twin-width I: Tractable FO model checking | volume = 69 | year = 2022}} *{{citation | last1 = Brandstädt | first1 = A. | author1-link = Andreas Brandstädt | last2 = Dragan | first2 = F.F. | last3 = Le | first3 = H.-O. | last4 = Mosca | first4 = R. | title = New graph classes of bounded clique-width | journal = Theory of Computing Systems | volume = 38 | year = 2005 | issue = 5 | pages = 623–645 | doi = 10.1007/s00224-004-1154-6 | citeseerx = 10.1.1.3.5994| s2cid = 2309695 }}. *{{citation | last1 = Brandstädt | first1 = A. | author1-link = Andreas Brandstädt | last2 = Engelfriet | first2 = J. | last3 = Le | first3 = H.-O. | last4 = Lozin | first4 = V.V. | title = Clique-width for 4-vertex forbidden subgraphs | journal = Theory of Computing Systems | volume = 39 | year = 2006 | issue = 4 | pages = 561–590 | doi = 10.1007/s00224-005-1199-1 | s2cid = 20050455 }}. *{{citation | last1 = Brandstädt | first1 = Andreas | last2 = Hundt | first2 = Christian | contribution = Ptolemaic graphs and interval graphs are leaf powers | doi = 10.1007/978-3-540-78773-0_42 | mr = 2472761 | pages = 479–491 | publisher = Springer, Berlin | series = Lecture Notes in Comput. Sci. | title = LATIN 2008: Theoretical informatics | volume = 4957 | year = 2008}}. *{{citation | last1 = Brandstädt | first1 = A. | author1-link = Andreas Brandstädt | last2 = Lozin | first2 = V.V. | title = On the linear structure and clique-width of bipartite permutation graphs | journal = [[Ars Combinatoria (journal)|Ars Combinatoria]] | volume = 67 | year = 2003 | pages = 273–281 | citeseerx = 10.1.1.16.2000}}. *{{citation | last = Chlebíková | first = J. | author-link = Janka Chlebíková | issue = 2 | journal = Acta Mathematica Universitatis Comenianae | mr = 1205875 | pages = 225–236 | series = New Series | title = On the tree-width of a graph | volume = 61 | year = 1992| citeseerx = 10.1.1.30.3900 }}. *{{citation | last1 = Cogis | first1 = O. | last2 = Thierry | first2 = E. | title = Computing maximum stable sets for distance-hereditary graphs | journal = Discrete Optimization | volume = 2 | issue = 2 | year = 2005 | pages = 185–188 | mr = 2155518 | doi = 10.1016/j.disopt.2005.03.004| doi-access = free}}. *{{citation | last1 = Corneil | first1 = Derek G. | author1-link = Derek Corneil | last2 = Habib | first2 = Michel | last3 = Lanlignel | first3 = Jean-Marc | last4 = Reed | first4 = Bruce | author4-link = Bruce Reed (mathematician) | last5 = Rotics | first5 = Udi | doi = 10.1016/j.dam.2011.03.020 | issue = 6 | journal = [[Discrete Applied Mathematics]] | mr = 2901093 | pages = 834–865 | title = Polynomial-time recognition of clique-width {{math|≤ 3}} graphs | volume = 160 | year = 2012| doi-access = free }}. *{{citation | last1 = Corneil | first1 = Derek G. | author1-link = Derek Corneil | last2 = Rotics | first2 = Udi | doi = 10.1137/S0097539701385351 | issue = 4 | journal = [[SIAM Journal on Computing]] | mr = 2148860 | pages = 825–847 | title = On the relationship between clique-width and treewidth | volume = 34 | year = 2005}}. *{{citation | last1 = Courcelle | first1 = Bruno | author1-link = Bruno Courcelle | last2 = Engelfriet | first2 = Joost | last3 = Rozenberg | first3 = Grzegorz | doi = 10.1016/0022-0000(93)90004-G | issue = 2 | journal = Journal of Computer and System Sciences | mr = 1217156 | pages = 218–270 | title = Handle-rewriting hypergraph grammars | volume = 46 | year = 1993| doi-access = free }}. Presented in preliminary form in Graph grammars and their application to computer science (Bremen, 1990), {{MR|1431281}}. *{{citation | last1 = Courcelle | first1 = B. | author1-link = Bruno Courcelle | contribution = Monadic second-order logic and hypergraph orientation | doi = 10.1109/LICS.1993.287589 | pages = 179–190 | title = Proceedings of Eighth Annual IEEE Symposium on Logic in Computer Science (LICS '93) | year = 1993| s2cid = 39254668 }}. *{{citation | last1 = Courcelle | first1 = B. | author1-link = Bruno Courcelle | last2 = Makowsky | first2 = J. A. | author2-link = Johann Makowsky | last3 = Rotics | first3 = U. | title = Linear time solvable optimization problems on graphs on bounded clique width | journal = Theory of Computing Systems | volume = 33 | issue = 2 | year = 2000 | pages = 125–150 | doi = 10.1007/s002249910009| citeseerx = 10.1.1.414.1845| s2cid = 15402031 }}. *{{citation | last1 = Courcelle | first1 = B. | author1-link = Bruno Courcelle | last2 = Olariu | first2 = S. | title = Upper bounds to the clique width of graphs | journal = [[Discrete Applied Mathematics]] | volume = 101 | issue = 1–3 | year = 2000 | pages = 77–144 | doi = 10.1016/S0166-218X(99)00184-5 | url = https://digitalcommons.odu.edu/computerscience_fac_pubs/122 | doi-access = free | accessdate = 2024-02-01 | archive-date = 2024-04-20 | archive-url = https://web.archive.org/web/20240420101639/https://digitalcommons.odu.edu/computerscience_fac_pubs/122/ | dead-url = no }}. *{{citation | last1 = Dvořák | first1 = Zdeněk | last2 = Král' | first2 = Daniel | arxiv = 1107.2161 | doi = 10.1016/j.ejc.2011.12.005 | issue = 4 | journal = Electronic Journal of Combinatorics | pages = 679–683 | title = Classes of graphs with small rank decompositions are χ-bounded | volume = 33 | year = 2012| s2cid = 5530520 }} *{{citation | last1 = Fellows | first1 = Michael R. | author1-link = Michael Fellows | last2 = Rosamond | first2 = Frances A. | author2-link = Frances A. Rosamond | last3 = Rotics | first3 = Udi | last4 = Szeider | first4 = Stefan | author4-link = Stefan Szeider | doi = 10.1137/070687256 | issue = 2 | journal = [[SIAM Journal on Discrete Mathematics]] | mr = 2519936 | pages = 909–939 | title = Clique-width is NP-complete | volume = 23 | year = 2009}}. *{{citation | last1 = Fomin | first1 = Fedor V. | last2 = Golovach | first2 = Petr A. | last3 = Lokshtanov | first3 = Daniel | last4 = Saurabh | first4 = Saket | doi = 10.1137/080742270 | issue = 5 | journal = [[SIAM Journal on Computing]] | mr = 2592039 | pages = 1941–1956 | title = Intractability of clique-width parameterizations | volume = 39 | year = 2010| citeseerx = 10.1.1.220.1712}}. *{{citation | last1 = Fomin | first1 = Fedor V. | last2 = Korhonen | first2 = Tuukka | contribution = Fast FPT-approximation of branchwidth | doi = 10.1145/3519935.3519996 | pages = 886–899 | publisher = ACM | title = Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing | arxiv = 2111.03492 | year = 2022| s2cid = 243832882 }}. *{{citation | last1 = Golumbic | first1 = Martin Charles | authorlink = Martin Charles Golumbic | last2 = Rotics | first2 = Udi | title = On the clique-width of some perfect graph classes | journal = International Journal of Foundations of Computer Science | volume = 11 | issue = 3 | year = 2000 | pages = 423–443 | mr = 1792124 | doi = 10.1142/S0129054100000260}}. *{{citation | last1 = Gurski | first1 = Frank | last2 = Wanke | first2 = Egon | editor1-last = Brandes | editor1-first = Ulrik | editor1-link = Ulrik Brandes | editor2-last = Wagner | editor2-first = Dorothea | editor2-link = Dorothea Wagner | contribution = The tree-width of clique-width bounded graphs without {{math|''K<sub>n,n</sub>''}} | doi = 10.1007/3-540-40064-8_19 | location = Berlin | mr = 1850348 | pages = 196–205 | publisher = Springer | series = Lecture Notes in Computer Science | title = Graph-Theoretic Concepts in Computer Science: 26th International Workshop, WG 2000, Konstanz, Germany, June 15–17, 2000, Proceedings | volume = 1928 | year = 2000}}. *{{citation | last1 = Gurski | first1 = Frank | last2 = Wanke | first2 = Egon | title = Line graphs of bounded clique-width | journal = [[Discrete Mathematics (journal)|Discrete Mathematics]] | volume = 307 | issue = 22 | year = 2007 | pages = 2734–2754 | doi = 10.1016/j.disc.2007.01.020| doi-access = free }}. *{{citation | last1 = Gurski | first1 = Frank | last2 = Wanke | first2 = Egon | doi = 10.1016/j.dam.2008.08.031 | issue = 4 | journal = [[Discrete Applied Mathematics]] | mr = 2499471 | pages = 583–595 | title = The NLC-width and clique-width for powers of graphs of bounded tree-width | volume = 157 | year = 2009| doi-access = free }}. *{{citation | last1 = Hliněný | first1 = Petr | last2 = Oum | first2 = Sang-il |author-link2= Oum Sang-il | doi = 10.1137/070685920 | issue = 3 | journal = [[SIAM Journal on Computing]] | mr = 2421076 | pages = 1012–1032 | title = Finding branch-decompositions and rank-decompositions | volume = 38 | year = 2008| citeseerx = 10.1.1.94.2272 }}. *{{citation | last1 = Oum | first1 = Sang-il |author-link1= Oum Sang-il | last2 = Seymour | first2 = Paul | author2-link = Paul Seymour (mathematician) | doi = 10.1016/j.jctb.2005.10.006 | issue = 4 | journal = [[Journal of Combinatorial Theory]] | mr = 2232389 | pages = 514–528 | series = Series B | title = Approximating clique-width and branch-width | volume = 96 | year = 2006| doi-access = free }}. *{{citation | last = Oum | first = Sang-il |author-link= Oum Sang-il | doi = 10.1145/1435375.1435385 | issue = 1 | journal = [[ACM Transactions on Algorithms]] | mr = 2479181 | page = Art. 10, 20 | title = Approximating rank-width and clique-width quickly | volume = 5 | year = 2008 | citeseerx = 10.1.1.574.8156 }}. *{{citation | last = Todinca | first = Ioan | contribution = Coloring powers of graphs of bounded clique-width | doi = 10.1007/978-3-540-39890-5_32 | mr = 2080095 | pages = 370–382 | publisher = Springer, Berlin | series = Lecture Notes in Comput. Sci. | title = Graph-theoretic concepts in computer science | volume = 2880 | year = 2003}}. *{{citation | last = Wanke | first = Egon | doi = 10.1016/0166-218X(94)90026-4 | issue = 2–3 | journal = [[Discrete Applied Mathematics]] | mr = 1300250 | pages = 251–266 | title = {{mvar|k}}-NLC graphs and polynomial algorithms | volume = 54 | year = 1994| doi-access = free }}. {{refend}} [[Category:图常量]] [[Category:图论]]
该页面使用的模板:
Template:Citation
(
查看源代码
)
Template:Harvtxt
(
查看源代码
)
Template:MR
(
查看源代码
)
Template:Refbegin
(
查看源代码
)
Template:Refend
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:Sfnp
(
查看源代码
)
Template:Unsolved
(
查看源代码
)
返回
团宽
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息