查看“︁古德温 - 斯塔顿积分”︁的源代码
←
古德温 - 斯塔顿积分
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
[[File:Goodwin-Staton Integral.png|thumb|300px|Goodwin-Staton Integral Maple 2D plot]] [[File:Goodwin-Station integral Maple complex 3D plot.png|thumb|300px|Goodwin-Station integral Maple complex 3D plot]] '''古德温 - 斯塔顿[[积分]]'''({{lang-en|Goodwin-Staton Integral}})定义如下<ref>Frank Oliver, NIST Handbook of Mathematical Functions, p160,Cambridge University Press 2010{{en}}</ref> <math>G(z)=\int _{0}^{\infty }\!{\frac {{{\rm e}^{-{t}^{2}}}}{t+z}}{dt}</math> 它是下列三阶非线性常微分方程的一个解: <math>4\,w \left( z \right) +8\,z{\frac {d}{dz}}w \left( z \right) + \left( 2+2\,{z}^{2} \right) {\frac {d^{2}}{d{z}^{2}}}w \left( z \right) +z{ \frac {d^{3}}{d{z}^{3}}}w \left( z \right) =0 </math> ==对称关系== <math>G(-z)=G(z)</math> ==与其他函数的关系== ;[[Meijer G-函数]] *<math>G(z)=\frac{1}{2}\,{\frac { G^{3, 2}_{2, 3}\left({z}^{2}\, \Big\vert\,^{0, 1/2}_{1/2, 0, 0}\right) }{\pi }}</math> [[MeijerG 函数]] ;[[指数函数]]与[[误差函数]] *<math>G \left( z \right) ={{\rm e}^{-{z}^{2}}}+{\it Ei} \left( 1,-{z}^{2} \right) {{\rm e}^{-{z}^{2}}}+{{\rm e}^{-{z}^{2}}} {{\rm erf}\left(iz\right)}</math> ; *<math>G \left( z \right) ={{\rm e}^{-{z}^{2}}}+ {{\rm U}\left(1,\,1,\,-{z}^{2}\right)}{{\rm e}^{{z}^{2}}}{{\rm e}^{-{z }^{2}}}+{\frac {2\,i{{\rm e}^{-{z}^{2}}}z {{\rm M}\left(1/2,\,3/2,\,{z}^{2}\right)}}{\sqrt {\pi }}} </math> *<math> G \left( z \right) ={{\rm e}^{-{z}^{2}}}+{\it Ei} \left( 1,-{z}^{2} \right) {{\rm e}^{-{z}^{2}}}+{\frac {2\,i{{\rm e}^{-{z}^{2}}}z{\it HeunB} \left( 1,0,1,0,\sqrt {{z}^{2}} \right) }{\sqrt {\pi }}} </math> *<math>G \left( z \right) ={{\rm e}^{-{z}^{2}}}+{\it Ei} \left( 1,-{z}^{2} \right) {{\rm e}^{-{z}^{2}}}+{\frac {z{{\rm e}^{-{z}^{2}}} \left( -i{ \it erfc} \left( \sqrt {-{z}^{2}} \right) +i \right) }{\sqrt {-{z}^{2} }}} </math> ;[[拉盖尔函数]] *<math>G \left( z \right) ={{\rm e}^{-{z}^{2}}}+{\it Ei} \left( 1,-{z}^{2} \right) {{\rm e}^{-{z}^{2}}}+i{{\rm e}^{-{z}^{2}}}\sqrt {\pi }z{\it LaguerreL} \left( -1/2,1/2,{z}^{2} \right) </math> *<math> </math> ==级数展开== *<math>G(z)=10\,{z}^{-1}-50\,{z}^{-2}-{\frac {1000}{3}}\,{\frac {{z}^{2}-1}{{z}^{3 }}}+2500\,{\frac {{z}^{2}-1}{{z}^{4}}}+10000\,{\frac {2-2\,{z}^{2}+{z} ^{4}}{{z}^{5}}}-{\frac {250000}{3}}\,{\frac {2-2\,{z}^{2}+{z}^{4}}{{z} ^{6}}}-{\frac {5000000}{21}}\,{\frac {-6+6\,{z}^{2}-3\,{z}^{4}+{z}^{6} }{{z}^{7}}}+{\frac {6250000}{3}}\,{\frac {-6+6\,{z}^{2}-3\,{z}^{4}+{z} ^{6}}{{z}^{8}}}+{\frac {125000000}{27}}\,{\frac {24-24\,{z}^{2}+12\,{z }^{4}-4\,{z}^{6}+{z}^{8}}{{z}^{9}}}-{\frac {125000000}{3}}\,{\frac {24 -24\,{z}^{2}+12\,{z}^{4}-4\,{z}^{6}+{z}^{8}}{{z}^{10}}}</math> *<math>G(z)=(1-\gamma-\ln \left( {z}^{2} \right) -i{\it csgn} \left( i{z}^{2} \right) \pi +{\frac {2\,i}{\sqrt {\pi }}}z+ \left( -2+\gamma+\ln \left( {z}^{2} \right) +i{\it csgn} \left( i{z}^{2} \right) \pi \right) {z}^{2}+{\frac {-4/3\,i}{\sqrt {\pi }}}{z}^{3}+ \left( { \frac {5}{4}}-1/2\,\gamma-1/2\,\ln \left( {z}^{2} \right) -1/2\,i{ \it csgn} \left( i{z}^{2} \right) \pi \right) {z}^{4}+O \left( {z}^{5 } \right) ) </math> ==参考文献== <references/> * http://journals.cambridge.org/article_S0013091504001087 * http://www.sciencedirect.com/science/article/pii/S0022407306002500 {{Wayback|url=http://www.sciencedirect.com/science/article/pii/S0022407306002500 |date=20150924154401 }} * http://dlmf.nist.gov/7.2 {{Wayback|url=http://dlmf.nist.gov/7.2 |date=20201205140227 }} * https://web.archive.org/web/20150225035306/http://discovery.dundee.ac.uk/portal/en/research/the-generalized-goodwinstaton-integral(3db9f429-7d7f-488c-a1d7-c8efffd01158).html * https://web.archive.org/web/20150225105452/http://discovery.dundee.ac.uk/portal/en/research/the-generalized-goodwinstaton-integral(3db9f429-7d7f-488c-a1d7-c8efffd01158)/export.html * http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_02.pdf {{Wayback|url=http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_02.pdf |date=20160304043431 }} * F. W. J. Olver, Werner Rheinbolt, Academic Press, 2014 , Mathematics,''Asymptotics and Special Functions'', 588 pages , ISBN 9781483267449 [https://books.google.com/books?id=JLziBQAAQBAJ&pg=PA567&lpg=PA567&dq=Goodwin-Staton+Integral&source=bl&ots=hESMlEIped&sig=czrxemmIQvMD1rV2yzCO1NJ91r0&sa=X&ei=IDvsVL03iOTyBdnwgJgD&ved=0CDEQ6AEwAjgK#v=onepage&q=Goodwin-Staton%20Integral&f=false gbook] {{Wayback|url=https://books.google.com/books?id=JLziBQAAQBAJ&pg=PA567&lpg=PA567&dq=Goodwin-Staton+Integral&source=bl&ots=hESMlEIped&sig=czrxemmIQvMD1rV2yzCO1NJ91r0&sa=X&ei=IDvsVL03iOTyBdnwgJgD&ved=0CDEQ6AEwAjgK#v=onepage&q=Goodwin-Staton%20Integral&f=false |date=20190605192742 }} [[Category:特殊函数]]
该页面使用的模板:
Template:En
(
查看源代码
)
Template:Lang-en
(
查看源代码
)
Template:Wayback
(
查看源代码
)
返回
古德温 - 斯塔顿积分
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息