查看“︁友誼數”︁的源代码
←
友誼數
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{unsolved|數學|存在無限多個正整數,其[[因數函數]]除以自身的比值均相等嗎?}} 在[[數論]]中,'''友誼數'''是指二個正[[整數]]m和n滿足σ(''m'')/m = σ(''n'')/''n''的關係,其中σ(n)是[[因數函數]],則稱它們是朋友,此二個整數互為友誼數。 例如(1+2+4+5+8+10+16+20+40+80)/80 = (1+2+4+5+8+10+20+25+40+50+100+200)/200 = 93/40,因此[[80]]和[[200]]都是友誼數。 友誼數為[[传递关系]],若m和n為友誼數,n和p為友誼數,則m和p必為友誼數。 所有的已知的友誼數有[[6]], [[12]], [[24]], [[28]], [[30]], ...({{oeis|A074902}},按σ(''n'')/''n''相同的組對排列:{{oeis|A050973}}、{{oeis|A050973}}) 確定不是友誼數的數即為'''孤獨數'''。但有些數尚未能證明它是否為孤獨數,例如10。 ==範例== 另一個例子:30和140形成友誼數的一對,因為30和140滿足以下的等式<ref>{{cite web|url=https://tomrocksmaths.com/2023/05/10/numbers-with-cool-names-amicable-sociable-friendly/ |title=Numbers with Cool Names: Amicable, Sociable, Friendly|date=10 May 2023 |access-date=26 July 2023}}</ref> <math> \dfrac{\sigma(30)}{30} = \dfrac{1+2+3+5+6+10+15+30}{30} =\dfrac{72}{30} = \dfrac{12}{5}</math> :<math> \dfrac{\sigma(140)}{140} = \dfrac{1+2+4+5+7+10+14+20+28+35+70+140}{140} = \dfrac{336}{140} = \dfrac{12}{5}.</math>。 數字2480、6200、40640也是該俱樂部成員,因為它們各自的豐度等於12/5。 作為奇數的友誼數,請考慮135和819(友誼數比例16/9),也有一奇一偶的友誼數,例如:42和544635(友誼數比例16/7),奇數的朋友也可能小於偶數,例如:84729645和155315394(友誼數比例896/351)或6517665、14705145、1119251474478和2746713837618(友誼數比例64/27)。 [[平方數]]可以是友誼數,例如:693479556(26334的平方)和8640、52416的友誼數比例都是127/36,[[立方數]]也可以是友誼數,例如:3375(15的立方)和6975的友誼數比例都是416/225。 ==較小整數的狀況== 在下表中,{{blue|藍色背景數字}}證明是友誼數,{{red|紅色背景數字}}證明是孤獨數,如果n和σ(''n'')互質則不標顏色,其他未知狀況用{{yellow|黃色背景數字}}標示。 <div style=display:inline-table> {| class="wikitable" |- ! <math>n</math> !! <math>\sigma(n)</math> !! <math>\frac{\sigma(n)}{n}</math> |- | 1 || 1 || 1 |- | 2 || 3 || 3/2 |- | 3 || 4 || 4/3 |- | 4 || 7 || 7/4 |- | 5 || 6 || 6/5 |- style="background: blue; color: white;" | 6 || 12 || 2 |- | 7 || 8 || 8/7 |- | 8 || 15 || 15/8 |- | 9 || 13 || 13/9 |- style="background: yellow; color: black;" | 10 || 18 || 9/5 |- | 11 || 12 || 12/11 |- style="background: blue; color: white;" | 12 || 28 || 7/3 |- | 13 || 14 || 14/13 |- style="background: yellow; color: black;" | 14 || 24 || 12/7 |- style="background: yellow; color: black;" | 15 || 24 || 8/5 |- | 16 || 31 || 31/16 |- | 17 || 18 || 18/17 |- style="background: red; color: white;" | 18 || 39 || 13/6 |- | 19 || 20 || 20/19 |- style="background: yellow; color: black;" | 20 || 42 || 21/10 |- | 21 || 32 || 32/21 |- style="background: yellow; color: black;" | 22 || 36 || 18/11 |- | 23 || 24 || 24/23 |- style="background: blue; color: white;" | 24 || 60 || 5/2 |- | 25 || 31 || 31/25 |- style="background: yellow; color: black;" | 26 || 42 || 21/13 |- | 27 || 40 || 40/27 |- style="background: blue; color: white;" | 28 || 56 || 2 |- | 29 || 30 || 30/29 |- style="background: blue; color: white;" | 30 || 72 || 12/5 |- | 31 || 32 || 32/31 |- | 32 || 63 || 63/32 |- style="background: yellow; color: black;" | 33 || 48 || 16/11 |- style="background: yellow; color: black;" | 34 || 54 || 27/17 |- | 35 || 48 || 48/35 |- | 36 || 91 || 91/36 |} </div> <div style=display:inline-table> {| class="wikitable" |- ! <math>n</math> !! <math>\sigma(n)</math> !! <math>\frac{\sigma(n)}{n}</math> |- | 37 || 38 || 38/37 |- style="background: yellow; color: black;" | 38 || 60 || 30/19 |- | 39 || 56 || 56/39 |- style="background: blue; color: white;" | 40 || 90 || 9/4 |- | 41 || 42 || 42/41 |- style="background: blue; color: white;" | 42 || 96 || 16/7 |- | 43 || 44 || 44/43 |- style="background: yellow; color: black;" | 44 || 84 || 21/11 |- style="background: red; color: white;" | 45 || 78 || 26/15 |- style="background: yellow; color: black;" | 46 || 72 || 36/23 |- | 47 || 48 || 48/47 |- style="background: red; color: white;" | 48 || 124 || 31/12 |- | 49 || 57 || 57/49 |- | 50 || 93 || 93/50 |- style="background: yellow; color: black;" | 51 || 72 || 24/17 |- style="background: red; color: white;" | 52 || 98 || 49/26 |- | 53 || 54 || 54/53 |- style="background: yellow; color: black;" | 54 || 120 || 20/9 |- | 55 || 72 || 72/55 |- style="background: blue; color: white;" | 56 || 120 || 15/7 |- | 57 || 80 || 80/57 |- style="background: yellow; color: black;" | 58 || 90 || 45/29 |- | 59 || 60 || 60/59 |- style="background: blue; color: white;" | 60 || 168 || 14/5 |- | 61 || 62 || 62/61 |- style="background: yellow; color: black;" | 62 || 96 || 48/31 |- | 63 || 104 || 104/63 |- | 64 || 127 || 127/64 |- | 65 || 84 || 84/65 |- style="background: blue; color: white;" | 66 || 144 || 24/11 |- | 67 || 68 || 68/67 |- style="background: yellow; color: black;" | 68 || 126 || 63/34 |- style="background: yellow; color: black;" | 69 || 96 || 32/23 |- style="background: yellow; color: black;" | 70 || 144 || 72/35 |- | 71 || 72 || 72/71 |- style="background: yellow; color: black;" | 72 || 195 || 65/24 |} </div> <div style=display:inline-table> {| class="wikitable" |- ! <math>n</math> !! <math>\sigma(n)</math> !! <math>\frac{\sigma(n)}{n}</math> |- | 73 || 74 || 74/73 |- style="background: yellow; color: black;" | 74 || 114 || 57/37 |- | 75 || 124 || 124/75 |- style="background: yellow; color: black;" | 76 || 140 || 35/19 |- | 77 || 96 || 96/77 |- style="background: blue; color: white;" | 78 || 168 || 28/13 |- | 79 || 80 || 80/79 |- style="background: blue; color: white;" | 80 || 186 || 93/40 |- | 81 || 121 || 121/81 |- style="background: yellow; color: black;" | 82 || 126 || 63/41 |- | 83 || 84 || 84/83 |- style="background: blue; color: white;" | 84 || 224 || 8/3 |- | 85 || 108 || 108/85 |- style="background: yellow; color: black;" | 86 || 132 || 66/43 |- style="background: yellow; color: black;" | 87 || 120 || 40/29 |- style="background: yellow; color: black;" | 88 || 180 || 45/22 |- | 89 || 90 || 90/89 |- style="background: yellow; color: black;" | 90 || 234 || 13/5 |- style="background: yellow; color: black;" | 91 || 112 || 16/13 |- style="background: yellow; color: black;" | 92 || 168 || 42/23 |- | 93 || 128 || 128/93 |- style="background: yellow; color: black;" | 94 || 144 || 72/47 |- style="background: yellow; color: black;" | 95 || 120 || 24/19 |- style="background: blue; color: white;" | 96 || 252 || 21/8 |- | 97 || 98 || 98/97 |- | 98 || 171 || 171/98 |- style="background: yellow; color: black;" | 99 || 156 || 52/33 |- | 100 || 217 || 217/100 |- | 101 || 102 || 102/101 |- style="background: blue; color: white;" | 102 || 216 || 36/17 |- | 103 || 104 || 104/103 |- style="background: yellow; color: black;" | 104 || 210 || 105/52 |- style="background: yellow; color: black;" | 105 || 192 || 64/35 |- style="background: yellow; color: black;" | 106 || 162 || 81/53 |- | 107 || 108 || 108/107 |- style="background: blue; color: white;" | 108 || 280 || 70/27 |} </div> <div style=display:inline-table> {| class="wikitable" |- ! <math>n</math> !! <math>\sigma(n)</math> !! <math>\frac{\sigma(n)}{n}</math> |- | 109 || 110 || 110/109 |- style="background: yellow; color: black;" | 110 || 216 || 108/55 |- | 111 || 152 || 152/111 |- style="background: yellow; color: black;" | 112 || 248 || 31/14 |- | 113 || 114 || 114/113 |- style="background: blue; color: white;" | 114 || 240 || 40/19 |- | 115 || 144 || 144/115 |- style="background: yellow; color: black;" | 116 || 210 || 105/58 |- style="background: yellow; color: black;" | 117 || 182 || 14/9 |- style="background: yellow; color: black;" | 118 || 180 || 90/59 |- | 119 || 144 || 144/119 |- style="background: blue; color: white;" | 120 || 360 || 3 |- | 121 || 133 || 133/121 |- style="background: yellow; color: black;" | 122 || 186 || 93/61 |- style="background: yellow; color: black;" | 123 || 168 || 56/41 |- style="background: yellow; color: black;" | 124 || 224 || 56/31 |- | 125 || 156 || 156/125 |- style="background: yellow; color: black;" | 126 || 312 || 52/21 |- | 127 || 128 || 128/127 |- | 128 || 255 || 255/128 |- | 129 || 176 || 176/129 |- style="background: yellow; color: black;" | 130 || 252 || 126/65 |- | 131 || 132 || 132/131 |- style="background: blue; color: white;" | 132 || 336 || 28/11 |- | 133 || 160 || 160/133 |- style="background: yellow; color: black;" | 134 || 204 || 102/67 |- style="background: blue; color: white;" | 135 || 240 || 16/9 |- style="background: red; color: white;" | 136 || 270 || 135/68 |- | 137 || 138 || 138/137 |- style="background: blue; color: white;" | 138 || 288 || 48/23 |- | 139 || 140 || 140/139 |- style="background: blue; color: white;" | 140 || 336 || 12/5 |- style="background: yellow; color: black;" | 141 || 192 || 64/47 |- style="background: yellow; color: black;" | 142 || 216 || 108/71 |- | 143 || 168 || 168/143 |- | 144 || 403 || 403/144 |} </div> <div style=display:inline-table> {| class="wikitable" |- ! <math>n</math> !! <math>\sigma(n)</math> !! <math>\frac{\sigma(n)}{n}</math> |-style="background: yellow; color: black;" | 145 || 180 || 36/29 |- style="background: yellow; color: black;" | 146 || 222 || 111/73 |-style="background: yellow; color: black;" | 147 || 228 || 76/49 |- style="background: red; color: white;" | 148 || 266 || 133/74 |- | 149 || 150 || 150/149 |- style="background: blue; color: white;" | 150 || 372 || 62/25 |- | 151 || 152 || 152/151 |- style="background: yellow; color: black;" | 152 || 300 || 75/38 |- style="background: yellow; color: black;" | 153 || 234 || 26/17 |- style="background: yellow; color: black;" | 154 || 288 || 144/77 |- | 155 || 192 || 192/155 |- style="background: yellow; color: black;" | 156 || 392 || 98/39 |- | 157 || 158 || 158/157 |- style="background: yellow; color: black;" | 158 || 240 || 120/79 |- style="background: yellow; color: black;" | 159 || 216 || 72/53 |- style="background: red; color: white;" | 160 || 378 || 189/80 |- | 161 || 192 || 192/161 |- style="background: red; color: white;" | 162 || 363 || 121/54 |- | 163 || 164 || 164/163 |-style="background: yellow; color: black;" | 164 || 294 || 147/82 |-style="background: yellow; color: black;" | 165 || 288 || 96/55 |- style="background: yellow; color: black;" | 166 || 252 || 126/83 |- | 167 || 168 || 168/167 |- style="background: blue; color: white;" | 168 || 480 || 20/7 |- | 169 || 183 || 183/169 |- style="background: yellow; color: black;" | 170 || 324 || 162/85 |- | 171 || 260 || 260/171 |- style="background: yellow; color: black;" | 172 || 308 || 77/43 |- | 173 || 174 || 174/173 |- style="background: blue; color: white;" | 174 || 360 || 60/29 |- | 175 || 248 || 248/175 |- style="background: red; color: white;" | 176 || 372 || 93/44 |- style="background: yellow; color: black;" | 177 || 240 || 80/59 |- style="background: yellow; color: black;" | 178 || 270 || 135/89 |- | 179 || 180 || 180/179 |-style="background: yellow; color: black;" | 180 || 546 || 91/30 |} </div> ==大的友誼數群== 若三個或三個以上的正整數,其[[因數函數]]除以自身的比值相等,則這些正整數形成友誼數群({{lang|en|friendly number club}})。換言之,友誼數群是友誼數關係的[[等價類]]。目前還不知道是否有由無限多個正整數組成的友誼數群。[[完全數]]的因數函數為自身的2倍,因此所有完全數形成一個友誼數群,推測應該會有無限多個完全數(至少會和[[梅森質數]]的個數一樣多),但尚未被證明。 == 孤獨數 == {{unsolved|數學|10是孤獨數嗎?}} 不與其他數組成友誼數對的正整數稱為'''孤獨數'''({{lang|en|solitary number}})。 所有滿足( ''n'', σ(''n'') ) = 1的''n''({{oeis|A014567}})都是孤獨數,因此所有[[質數]][[冪]]都是孤獨數。''n'', σ(''n'')非[[互質]]的孤獨數已知有[[18]], [[45]], [[48]], ... ({{oeis|A095739}})。10, 14, 15, 20等數未能證明它是否孤獨數。 ==参考文献== {{reflist}} {{Divisor classes navbox}} [[Category:除數函數]] [[Category:整数数列]] [[Category:数论]] [[Category:数学中未解决的问题]]
该页面使用的模板:
Template:Blue
(
查看源代码
)
Template:Cite web
(
查看源代码
)
Template:Divisor classes navbox
(
查看源代码
)
Template:Lang
(
查看源代码
)
Template:Oeis
(
查看源代码
)
Template:Red
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:Unsolved
(
查看源代码
)
Template:Yellow
(
查看源代码
)
返回
友誼數
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息