查看“︁卡马萨-霍尔姆方程”︁的源代码
←
卡马萨-霍尔姆方程
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
'''卡马萨-霍尔姆方程'''(Camassa Holm equation)是流体力学中的一个非线性偏微分方程 :<math> u_t + 2\kappa u_x - u_{xxt} + 3 u u_x = 2 u_x u_{xx} + u u_{xxx}. \, </math> 1993年卡马萨和霍尔姆以此偏微分方程模拟浅水波<ref name=CH1993>Camassa & Holm 1993</ref>, 其中κ是大于0的参数。 ==行波解== [[File:Camassa Holm nlpde 3d plot.gif|thumb|right|350px|卡马萨-霍尔姆方程3D动画]] 卡马萨-霍尔姆方程有行波解<ref>Beals, Sattinger & Szmigielski 1999</ref>: <math>u2 := (3/2)*\frac{c*(c-2*\kappa)}{(cosh((1/2)*\sqrt{((c-2*\kappa)/c)}*(-x-x0+c*t))^2*(\kappa+c))}</math> 参数:c = 1, x0 = 1, kappa = .3 代人得: <math>u(x,t)=\frac{.463}{cosh(-.316*x-.316+.316*t)^2}</math> ===Maple TWSolution=== [[Maple]]软件包TWSolution可提供多种行波解<ref>Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Page 27-35</ref>。 ;sech 展开 <math>g[2] := {u(x, t) = -(1/2)*kappa+_C5*sech(_C1+(1/2)*sqrt(3)*x-(1/4)*kappa*sqrt(3)*t)^2}</math> <math>g[3] := {u(x, t) = -(1/2)*kappa+_C5*sech(_C1-(1/2)*sqrt(3)*x+(1/4)*kappa*sqrt(3)*t)^2}</math> <math>g[4] := {u(x, t) = _C4+(-(3/2)*_C4-(3/4)*kappa)*sech(_C1+(1/2*I)*sqrt(3)*x-(1/4*I)*kappa*sqrt(3)*t)^2}</math> <math>g[5] := {u(x, t) = _C4+(-(3/2)*_C4-(3/4)*kappa)*sech(_C1-(1/2*I)*sqrt(3)*x+(1/4*I)*kappa*sqrt(3)*t)^2}</math> <math>g[6] := {u(x, t) = -(_C3-4*_C3*_C2^2+2*kappa*_C2)/(_C2*(3+4*_C2^2))+24*_C2*(2*_C3+kappa*_C2)*sech(_C1+_C2*x+_C3*t)^2/(16*_C2^4-9)}</math> {{Gallery |width=250 |height=200 |align=center |File:Camassa Holm equation traveling wave sech plot5.gif|Camassa Holm equation traveling wave sech plot5 |File:Camassa Holm equation traveling wave sech plot4.gif|Camassa Holm equation traveling wave sech plot4 |File:Camassa Holm equation traveling wave sech plot6.gif|Camassa Holm equation traveling wave sech plot6 }} ;exp 展开 <math>g[2] := {u(x, t) = -(1/9)*sqrt(3)*_C3-(1/3)*kappa+_C5*exp(_C1-sqrt(3)*x+_C3*t)}</math> <math>g[3] := {u(x, t) = (1/9)*sqrt(3)*_C3-(1/3)*kappa+_C5*exp(_C1+sqrt(3)*x+_C3*t)}</math> <math>g[5] := {u(x, t) = -(1/3)*sqrt(3)*_C3-(1/3)*kappa+_C7*(exp(_C1-(1/3)*sqrt(3)*x+_C3*t))^3}</math> {{Gallery |width=250 |height=200 |align=center |File:Camassa Holm equation traveling wave exp plot2.gif|Camassa Holm equation traveling wave exp plot2 |File:Camassa Holm equation traveling wave exp plot3.gif|Camassa Holm equation traveling wave exp plot3 |File:Camassa Holm equation traveling wave exp plot5.gif|Camassa Holm equation traveling wave exp plot5 }} ;csch 展开 <math>g[2] := {u(x, t) = -(1/2)*kappa+_C5*csch(_C1+(1/2)*sqrt(3)*x-(1/4)*kappa*sqrt(3)*t)^2}</math> <math>g[4] := {u(x, t) = _C4+((3/2)*_C4+(3/4)*kappa)*csch(_C1+(1/2*I)*sqrt(3)*x-(1/4*I)*kappa*sqrt(3)*t)^2}</math> <math>g[6] := {u(x, t) = -(_C3-4*_C3*_C2^2+2*kappa*_C2)/(_C2*(4*_C2^2+3))-24*_C2*(2*_C3+kappa*_C2)*csch(_C1+_C2*x+_C3*t)^2/(16*_C2^4-9)}</math> {{Gallery |width=250 |height=200 |align=center |File:Camassa Holm equation traveling wave csch plot2.gif|Camassa Holm equation traveling wave csch plot2 |File:Camassa Holm equation traveling wave csch plot4.gif|Camassa Holm equation traveling wave csch plot4 |File:Camassa Holm equation traveling wave csch plot6.gif|Camassa Holm equation traveling wave csch plot6 }} ;sec 展开 <math>g[3] := {u(x, t) = -(1/2)*kappa+_C5*sec(_C1-(1/2*I)*sqrt(3)*x+(1/4*I)*kappa*sqrt(3)*t)^2}</math> <math>g[5] := {u(x, t) = _C4+(-(3/2)*_C4-(3/4)*kappa)*sec(_C1-(1/2)*sqrt(3)*x+(1/4)*kappa*sqrt(3)*t)^2}</math> <math>g[6] := {u(x, t) = (_C3+4*_C3*_C2^2+2*kappa*_C2)/(_C2*(4*_C2^2-3))-24*_C2*(2*_C3+kappa*_C2)*sec(_C1+_C2*x+_C3*t)^2/(16*_C2^4-9)}</math> {{Gallery |width=250 |height=200 |align=center |File:Camassa Holm equation traveling wave sec plot3.gif|Camassa Holm equation traveling wave sec plot3 |File:Camassa Holm equation traveling wave sec plot5.gif|Camassa Holm equation traveling wave sec plot5 | }} ;JacobiSN 展开 <math>g[3] := {u(x, t) = (1/9*I)*sqrt(3)*_C4-(1/3)*kappa+_C6*sin(_C2-I*sqrt(3)*x+_C4*t)}</math> <math>g[4] := {u(x, t) = -(2/9*I)*sqrt(3)*_C4-(1/2)*_C7-(1/3)*kappa+_C7*sin(_C2+(1/2*I)*sqrt(3)*x+_C4*t)^2}</math> [[File:Camassa Holm equation traveling wave Jacobish plot4.gif|thumb|center|250px|Camassa Holm equation traveling wave Jacobish plot4]] <math></math> <math></math> <math></math> <math></math> <math></math> ==参考文献== {{非线性偏微分方程}} <references/> *{{Citation | last = Beals | first = Richard | author-link = | last2 = Sattinger | first2 = David H. | last3 = Szmigielski | first3 = Jacek | year = 1999 | title = Multi-peakons and a theorem of Stieltjes | periodical = Inverse Problems | volume = 15 | issue = 1 | pages = L1–L4 | arxiv = solv-int/9903011 | doi = 10.1088/0266-5611/15/1/001 |bibcode = 1999InvPr..15L...1B }} *{{Citation | last = Boldea | first = Costin-Radu | author-link = | year = 1995 | title = A generalization for peakon's solitary wave and Camassa–Holm equation | periodical = General Mathematics | volume = 5 | issue = 1–4 | pages = 33–42 | url = http://www.emis.de/journals/GM/vol5/bold.html | doi = | accessdate = 2013-12-30 | archive-date = 2020-07-06 | archive-url = https://web.archive.org/web/20200706013357/https://www.emis.de/journals/GM/vol5/bold.html | dead-url = no }} *{{Citation | last = Boutet de Monvel | first = Anne | author-link = | last2 = Kostenko | first2 = Aleksey | last3 = Shepelsky | first3 = Dmitry | last4 = Teschl | first4 = Gerald | author4-link = Gerald Teschl | year = 2009 | title = Long-Time Asymptotics for the Camassa–Holm Equation | periodical = SIAM J. Math. Anal. | volume = 41 | issue = 4 | pages = 1559–1588 | arxiv = 0902.0391 | doi = 10.1137/090748500 }} *{{Citation | last = Bressan | first = Alberto | author-link = | last2 = Constantin | first2 = Adrian | year = 2007a | title = Global conservative solutions of the Camassa–Holm equation | periodical = Arch. Ration. Mech. Anal. | volume = 183 | issue = 2 | pages = 215–239 | url = http://www.math.ntnu.no/conservation/2005/016.html | doi = 10.1007/s00205-006-0010-z | bibcode = 2007ArRMA.183..215B | accessdate = 2013-12-30 | archive-date = 2020-08-04 | archive-url = https://web.archive.org/web/20200804170259/https://www.math.ntnu.no/conservation/2005/016.html | dead-url = no }} *{{Citation | last = Bressan | first = Alberto | author-link = | last2 = Constantin | first2 = Adrian | year = 2007b | title = Global dissipative solutions of the Camassa–Holm equation | periodical = Anal. Appl. | volume = 5 | issue = | pages = 1–27 | url = http://www.math.ntnu.no/conservation/2006/023.html | doi = 10.1142/S0219530507000857 | accessdate = 2013-12-30 | archive-date = 2016-03-05 | archive-url = https://web.archive.org/web/20160305152659/https://www.math.ntnu.no/conservation/2006/023.html | dead-url = no }} *{{Citation | last = Camassa | first = Roberto | author-link = | last2 = Holm | first2 = Darryl D. | year = 1993 | title = An integrable shallow water equation with peaked solitons | periodical = Phys. Rev. Lett. | volume = 71 | issue = 11 | pages = 1661–1664 | arxiv = patt-sol/9305002 | doi = 10.1103/PhysRevLett.71.1661 | bibcode=1993PhRvL..71.1661C }} *{{Citation | last = Constantin | first = Adrian | author-link = | year = 2000 | title = Existence of permanent and breaking waves for a shallow water equation: a geometric approach | periodical = Annales de l'Institut Fourier | volume = 50 | issue = 2 | pages = 321–362 | url = http://www.numdam.org/item?id=AIF_2000__50_2_321_0 | doi = | accessdate = 2013-12-30 | archive-date = 2016-03-03 | archive-url = https://web.archive.org/web/20160303221329/http://www.numdam.org/item?id=AIF_2000__50_2_321_0 | dead-url = no }} *{{Citation | last = Constantin | first = Adrian | author-link = | year = 2001 | title = On the scattering problem for the Camassa–Holm equation | periodical = R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. | volume = 457 | issue = 2008 | pages = 953–970 | url = | doi = 10.1098/rspa.2000.0701 |bibcode = 2001RSPSA.457..953C }} *{{Citation | last = Constantin | first = Adrian | author-link = | last2 = Escher | first2 = Joachim | year = 1998b | title = Wave breaking for nonlinear nonlocal shallow water equations | periodical = Acta Math. | volume = 181 | issue = 2 | pages = 229–243 | url = | doi = 10.1007/BF02392586 }} *{{Citation | last = Constantin | first = Adrian | author-link = | last2 = Escher | first2 = Joachim | year = 2000 | title = On the blow-up rate and the blow-up set of breaking waves for a shallow water equation | periodical = Math. Z. | volume = 233 | issue = 1 | pages = 75–91 | url = | doi = 10.1007/PL00004793 }} *{{Citation | last = Constantin | first = Adrian | author-link = | last2 = McKean | first2 = Henry P. | year = 1999 | title = A shallow water equation on the circle | periodical = Commun. Pure Appl. Math. | volume = 52 | issue = 8 | pages = 949–982 | doi = 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D }} *{{Citation | last1 = Constantin | first1 = Adrian | last2 = Strauss | first2 = Walter A. | year = 2000 | title = Stability of peakons | journal = Comm. Pure Appl. Math. | volume = 53 | issue = 5 | pages = 603–610 | doi = 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L }} *{{Citation | last1 = Constantin | first1 = Adrian | last2 = Strauss | first2 = Walter A. | year = 2002 | title = Stability of the Camassa–Holm solitons | journal = J. Nonlinear Sci. | volume = 12 | issue = 4 | pages = 415–422 | doi = 10.1007/s00332-002-0517-x |bibcode = 2002JNS....12..415C }} *{{Citation | last = Constantin | first = Adrian | author-link = | last2 = Gerdjikov | first2 = Vladimir S. | last3 = Ivanov | first3 = Rossen I. | year = 2006 | title = Inverse scattering transform for the Camassa–Holm equation | periodical = Inverse Problems | volume = 22 | issue = 6 | pages = 2197–2207 | arxiv = nlin/0603019 | doi = 10.1088/0266-5611/22/6/017 |bibcode = 2006InvPr..22.2197C }} *{{Citation | last = Eckhardt | first = Jonathan | last2 = Teschl | first2 = Gerald | author2-link = Gerald Teschl | year = 2013 | title = On the isospectral problem of the dispersionless Camassa-Holm equation | periodical = Adv. Math. | volume = 235 | issue = 1 | pages = 469–495 | arxiv = 1205.5831 | doi = 10.1016/j.aim.2012.12.006 |bibcode = }} *{{Citation | last = Loubet | first = Enrique | author-link = | year = 2005 | title = About the explicit characterization of Hamiltonians of the Camassa–Holm hierarchy | periodical = J. Nonlinear Math. Phys. | volume = 12 | issue = 1 | pages = 135–143 | url = | doi = 10.2991/jnmp.2005.12.1.11 |bibcode = 2005JNMP...12..135L }} *{{Citation | last = McKean | first = Henry P. | author-link = | year = 2003a | title = Fredholm determinants and the Camassa–Holm hierarchy | periodical = Comm. Pure Appl. Math. | volume = 56 | issue = 5 | pages = 638–680 | url = | doi = 10.1002/cpa.10069 }} *{{Citation | last = McKean | first = Henry P. | author-link = | year = 2004 | title = Breakdown of the Camassa–Holm equation | periodical = Comm. Pure Appl. Math. | volume = 57 | issue = 3 | pages = 416–418 | url = | doi = 10.1002/cpa.20003 }} *{{Citation | last = Parker | first = Allen | year = 2005b | title = On the Camassa–Holm equation and a direct method of solution. III. ''N''-soliton solutions | periodical = Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. | volume = 461 | issue = 2064 | pages = 3893–3911 | doi = 10.1098/rspa.2005.1537 |bibcode = 2005RSPSA.461.3893P }} *{{citation | last=Liao | first=S.J. |authorlink=Liao Shijun | title= Do peaked solitary water waves indeed exist? | journal=Communications in Nonlinear Science and Numerical Simulation |year=2013 | doi=10.1016/j.cnsns.2013.09.042 }} # *谷超豪 《[[孤立子]]理论中的[[达布变换]]及其几何应用》 上海科学技术出版社 # *阎振亚著 《复杂非线性波的构造性理论及其应用》 科学出版社 2007年 # 李志斌编著 《非线性数学物理方程的行波解》 科学出版社 #王东明著 《消去法及其应用》 科学出版社 2002 # *何青 王丽芬编著 《[[Maple]] 教程》 科学出版社 2010 ISBN 9787030177445 #Graham W. Griffiths William E.Shiesser Traveling Wave Analysis of Partial Differential p135 Equations Academy Press # Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,1997 #Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Springer. #Eryk Infeld and George Rowlands,Nonlinear Waves,Solitons and Chaos,Cambridge 2000 #Saber Elaydi,An Introduction to Difference Equationns, Springer 2000 #Dongming Wang, Elimination Practice,Imperial College Press 2004 # David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004 # George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759 [[category:非线性偏微分方程]] [[category:孤立子]]
该页面使用的模板:
Template:Citation
(
查看源代码
)
Template:Gallery
(
查看源代码
)
Template:非线性偏微分方程
(
查看源代码
)
返回
卡马萨-霍尔姆方程
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息