查看“︁卡爾曼猜想”︁的源代码
←
卡爾曼猜想
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
[[File:Block scheme of control system.jpg|thumb| 圖1:控制系統的方塊圖,其中的''G''(''s'')是線性傳遞函數,而''f''(''e'')是單值連續可微的函數]] '''卡爾曼猜想'''(Kalman's conjecture)或'''卡爾曼問題'''(Kalman problem)是已找到反例的[[猜想]],是針對[[非線性控制]]系統,其中有一個純量非線性元素,此系統在線性穩定區間內的絕對穩定性。卡爾曼猜想是[[阿依熱爾曼猜想]]的加強版本,也是{{link-en|Markus–Yamabe猜想|Markus–Yamabe conjecture}}的特例。卡爾曼猜想雖已證實為否,不過帶出了(有效的)[[非線性控制|絕對穩定性的充份準則]]。 == 卡爾曼猜想的數學描述(卡爾曼問題)== [[鲁道夫·卡尔曼]]在1957年的論文<ref name=1957-Kalman>{{cite journal | author = Kalman R.E. | year = 1957 | title = Physical and Mathematical mechanisms of instability in nonlinear automatic control systems | journal = Transactions of ASME | volume = 79 | number = 3 | pages = 553–566 }} </ref>中提到: <blockquote>若圖1中的''f''(''e'')用''e''乘上常數''K''取代,''K''對應''f''<nowiki>'</nowiki>(''e'')中所有的可能值,發現閉迴路系統在所有''K''值下都收斂。在直覺上會認為此系統是單調穩定的,也就是說,所有暫態的解都會收斂到唯一、穩定的臨界點。 </blockquote> 卡尔曼的描述可以寫成以下的猜想<ref name=2011-DAN-Kalman>{{cite journal |author1 = Leonov G.A. |author2 = Kuznetsov N.V. |year = 2011 |title = Algorithms for Searching for Hidden Oscillations in the Aizerman and Kalman Problems |journal = Doklady Mathematics |volume = 84 |number = 1 |pages = 475–481 |url = http://www.math.spbu.ru/user/nk/PDF/2011-DAN-Absolute-stability-Aizerman-problem-Kalman-conjecture.pdf |doi = 10.1134/S1064562411040120 |access-date = 2019-05-11 |archive-date = 2016-03-04 |archive-url = https://web.archive.org/web/20160304053548/http://www.math.spbu.ru/user/nk/PDF/2011-DAN-Absolute-stability-Aizerman-problem-Kalman-conjecture.pdf |dead-url = no }}</ref>: <blockquote> 考慮一個有單一純量非線性函數的函數 :<math> \frac{dx}{dt}=Px+qf(e),\quad e=r^*x \quad x\in R^n, </math> 其中''P''是常數的''n''×''n''矩陣,''q''、''r''是常數的''n''維向量,∗是轉置符號,''f''(''e'')是純量函數,''f''(0) = 0。假設,''f''(''e'')是可微分函數,而且滿足以下條件 :<math> k_1 < f'(e)< k_2. \, </math> 。則卡爾曼猜想是指此系統在大區域穩定(也就是其唯一駐點為全域[[吸引子]])若配合''f''(''e'') = ''ke'', ''k'' ∈ (''k''<sub>1</sub>, ''k''<sub>2</sub>)的所有線性系統都是漸近穩定。 </blockquote> [[阿依熱爾曼猜想]]要求非線性導數的條件,而卡爾曼猜想要求非線性本身要在線性區間內。 卡爾曼猜想在''n'' ≤ 3時成立,若是''n'' > 3,存在有效生成反例的作法<ref>{{cite journal | author1 = Bragin V.O. | author2 = Vagaitsev V.I. | author3 = Kuznetsov N.V. | author4 = Leonov G.A. | year = 2011 | title = Algorithms for Finding Hidden Oscillations in Nonlinear Systems. The Aizerman and Kalman Conjectures and Chua's Circuits | journal = Journal of Computer and Systems Sciences International | volume = 50 | number = 5 | pages = 511–543 | url = http://www.math.spbu.ru/user/nk/PDF/2011-TiSU-Hidden-oscillations-attractors-Aizerman-Kalman-conjectures.pdf | doi = 10.1134/S106423071104006X | access-date = 2019-05-11 | archive-date = 2016-03-04 | archive-url = https://web.archive.org/web/20160304045017/http://www.math.spbu.ru/user/nk/PDF/2011-TiSU-Hidden-oscillations-attractors-Aizerman-Kalman-conjectures.pdf | dead-url = no }}</ref><ref name=2011-IJBC-Hidden-attractors>{{cite journal | author1 = Leonov G.A. | author2 = Kuznetsov N.V. | year = 2013 | title = Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits | journal = International Journal of Bifurcation and Chaos | volume = 23 | issue = 1 | pages = art. no. 1330002 | url = http://www.worldscientific.com/doi/pdf/10.1142/S0218127413300024 | doi = 10.1142/S0218127413300024 | access-date = 2019-05-11 | archive-date = 2019-03-24 | archive-url = https://web.archive.org/web/20190324122428/https://www.worldscientific.com/doi/pdf/10.1142/S0218127413300024 | dead-url = no }}</ref>:非線性的導數在線性穩定區間內,存在唯一穩定的平衡點,以及一個穩定的周期解([[隱蔽振盪]])。 在離散系統下,卡爾曼猜想只在n=1時成立,在''n'' ≥ 2時可以建構反例<ref>{{cite journal |author1=Carrasco J. |author2=Heath W. P. |author3=de la Sen M. | year = 2015 | title = Second-order counterexample to the Kalman conjecture in discrete-time | journal = 2015 European Control Conference }} </ref><ref>{{cite journal |author1=Heath W. P. |author2=Carrasco J |author3=de la Sen M. | year = 2015 | title = Second-order counterexamples to the discrete-time Kalman conjecture | journal = Automatica | doi = 10.1016/j.automatica.2015.07.005 }} </ref>。 == 參考資料 == {{Reflist}} == 延伸閱讀 == *{{cite journal | author1 = Leonov G.A. | author2 = Kuznetsov N.V. | year = 2011 | title = Analytical-numerical methods for investigation of hidden oscillations in nonlinear control systems | journal = IFAC Proceedings Volumes (IFAC-PapersOnline) | volume = 18 | number = 1 | pages = 2494–2505 | url = http://www.math.spbu.ru/user/nk/PDF/2011-IFAC-Hidden-oscillations-control-systems-Aizerman-problem-Kalman.pdf | doi = 10.3182/20110828-6-IT-1002.03315 | access-date = 2019-05-11 | archive-date = 2020-07-09 | archive-url = https://web.archive.org/web/20200709161140/https://www.math.spbu.ru/user/nk/PDF/2011-IFAC-Hidden-oscillations-control-systems-Aizerman-problem-Kalman.pdf | dead-url = no }} == 外部連結 == * [http://www.math.spbu.ru/user/nk/PDF/Harmonic_balance_Absolute_stability.pdf Analytical-numerical localization of hidden oscillation in counterexamples to Aizerman's and Kalman's conjectures]{{Wayback|url=http://www.math.spbu.ru/user/nk/PDF/Harmonic_balance_Absolute_stability.pdf |date=20160304112151 }} * [http://maplecloud.maplesoft.com/application.jsp?appId=5742954790518784 Discrete-time counterexample in Maplecloud]{{Wayback|url=http://maplecloud.maplesoft.com/application.jsp?appId=5742954790518784 |date=20160528205728 }} [[Category:已證否的猜想]] [[Category:非線性控制]]
该页面使用的模板:
Template:Cite journal
(
查看源代码
)
Template:Link-en
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:Wayback
(
查看源代码
)
返回
卡爾曼猜想
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息