查看“︁半指數函數”︁的源代码
←
半指數函數
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
在[[數學]]上,'''半指數函數'''(Half-exponential function)是[[指數函數]]的{{link-en|函數平方根|Functional square root}};換句話說,若<math>f</math>是一個半指數函數,則<math>f</math>與自己的[[複合函數]]會是一個指數函數:{{r|sqrtexp|miltersen}} <math display=block>f\bigl(f(x)\bigr) = ab^x,</math> 其中{{nowrap|<math>a</math>與<math>b</math>.}}是常數。 ==解析解的不存在性== 假若以加減乘除等標準算數運算、指數、對數及實數常數等來表達一個函數<math>f</math>,那麼<math>f\bigl(f(x)\bigr)</math>要不就是次指數的,要不就是超指數的,{{r|transseries}}因此{{link-en|哈代L-函數|Hardy field}}不可能是半指數函數。 ==建構== 有無限多的函數,其半複合函數是與彼此相同的指數函數;特別地,對於任意位於[[開區間]]<math>(0,1)</math>當中的數<math>A</math>及任意從<math>[0,A]</math>映至<math>[A,1]</math>的[[單調函數|嚴格遞增]][[满射]][[連續函數|連續]]函数<math>g</math>而言,都存在作為這函數擴張的嚴格遞增連續實數函數<math>f</math>,使得{{nowrap|<math>f\bigl(f(x)\bigr)=\exp x</math>.{{r|croneu}}}},而這<math>f</math>是以下[[函數方程]]的唯一解: <math display=block> f (x) = \begin{cases} g (x) & \mbox{if } x \in [0,A], \\ \exp g^{-1} (x) & \mbox{if } x \in (A,1], \\ \exp f ( \ln x) & \mbox{if } x \in (1,\infty), \\ \ln f ( \exp x) & \mbox{if } x \in (-\infty,0). \\ \end{cases} </math> [[File:Half-exponential_function.png|thumb|right|300px|半指數函數的例子]] 一個簡單的、使得<math>f</math>處處有連續一階導數例子,是設<math>A=\tfrac12</math>且<math>g(x)=x+\tfrac12</math>,而這會得到下式: <math display=block> f (x) = \begin{cases} \log_e\left(e^x +\tfrac12\right) & \mbox{if } x \le -\log_e 2, \\ e^x - \tfrac12 & \mbox{if } -\log_e 2 \le x \le 0, \\ x +\tfrac12 & \mbox{if } 0 \le x \le \tfrac12, \\ e^{x-1/2} & \mbox{if } \tfrac12 \le x \le 1 , \\ x \sqrt{e} & \mbox{if } 1 \le x \le \sqrt{e} , \\ e^{x / \sqrt{e}} & \mbox{if } \sqrt{e} \le x \le e , \\ x^{\sqrt{e}} & \mbox{if } e \le x \le e^{\sqrt{e}} , \\ e^{x^{1/\sqrt{e}}} & \mbox{if } e^{\sqrt{e}} \le x \le e^e , \ldots\\ \end{cases} </math> ==應用== 半指數函數出現於[[計算複雜性理論]]當中,在其中半指數成長率是介於多項式成長率與指數成長率「之間」的一種成長速率。{{r|miltersen}}若一個函數<math>f</math>的成長率至少與半指數函數一樣快(也就是這函數與自身的複合函數的成長率是指數函數),就表示說這函數是[[單調函數|非遞減的]],且對於任意<math>C>0</math>而言,有<math>f^{-1}(x^C)=o(\log x)</math>。{{r|razrud}} ==參見== *[[迭代函數]] *{{link-en|施羅德方程式|Schröder's equation}} *{{link-en|阿貝爾方程式|Abel equation}} ==參考資料== {{reflist|refs= <ref name=croneu>{{cite journal | last1 = Crone | first1 = Lawrence J. | last2 = Neuendorffer | first2 = Arthur C. | doi = 10.1016/0022-247X(88)90080-7 | doi-access = free | issue = 2 | journal = Journal of Mathematical Analysis and Applications | mr = 943525 | pages = 520–529 | title = Functional powers near a fixed point | volume = 132 | year = 1988}}</ref> <ref name=miltersen>{{cite conference | last1 = Miltersen | first1 = Peter Bro | last2 = Vinodchandran | first2 = N. V. | last3 = Watanabe | first3 = Osamu | editor1-last = Asano | editor1-first = Takao | editor2-last = Imai | editor2-first = Hiroshi | editor3-last = Lee | editor3-first = D. T. | editor4-last = Nakano | editor4-first = Shin{-}Ichi | editor5-last = Tokuyama | editor5-first = Takeshi | contribution = Super-polynomial versus half-exponential circuit size in the exponential hierarchy | doi = 10.1007/3-540-48686-0_21 | mr = 1730337 | pages = 210–220 | publisher = Springer | series = Lecture Notes in Computer Science | title = Computing and Combinatorics, 5th Annual International Conference, COCOON '99, Tokyo, Japan, July 26-28, 1999, Proceedings | volume = 1627 | year = 1999}}</ref> <ref name=razrud>{{cite journal | last1 = Razborov | first1 = Alexander A. | author1-link = Alexander Razborov | last2 = Rudich | first2 = Steven | author2-link = Steven Rudich | doi = 10.1006/jcss.1997.1494 | doi-access = free | issue = 1 | journal = [[Journal of Computer and System Sciences]] | mr = 1473047 | pages = 24–35 | title = Natural proofs | volume = 55 | year = 1997}}</ref> <ref name=sqrtexp>{{cite journal | last = Kneser | first = H. | author-link = Hellmuth Kneser | journal = [[Crelle's Journal|Journal für die reine und angewandte Mathematik]] | mr = 0035385 | pages = 56–67 | title = Reelle analytische Lösungen der Gleichung {{math|''φ''(''φ''(''x'') {{=}} ''e''<sup>''x''</sup>}} und verwandter Funktionalgleichungen | url = https://gdz.sub.uni-goettingen.de/id/PPN243919689_0187?tify%3D%7B%22pages%22%3A%5B62%5D%7D | volume = 187 | year = 1950 | access-date = 2022-06-22 | archive-date = 2022-05-18 | archive-url = https://web.archive.org/web/20220518013617/https://gdz.sub.uni-goettingen.de/id/PPN243919689_0187?tify%3D%7B%22pages%22:%5B62%5D%7D | dead-url = no }}</ref> <ref name=transseries>{{cite book | last = van der Hoeven | first = J. | doi = 10.1007/3-540-35590-1 | isbn = 978-3-540-35590-8 | mr = 2262194 | publisher = Springer-Verlag, Berlin | series = Lecture Notes in Mathematics | title = Transseries and real differential algebra | volume = 1888 | year = 2006}}. See exercise 4.10, p. 91, according to which every such function has a comparable growth rate to an exponential or logarithmic function iterated an integer number of times, rather than the [[half-integer]] that would be required for a half-exponential function.</ref> }} ==外部連結== * [https://mathoverflow.net/q/12081 Does the exponential function have a (compositional) square root?] * [https://mathoverflow.net/q/45477 “Closed-form” functions with half-exponential growth] [[Category:算法分析]] [[Category:計算複雜性理論]]
该页面使用的模板:
Template:Link-en
(
查看源代码
)
Template:Nowrap
(
查看源代码
)
Template:R
(
查看源代码
)
Template:Reflist
(
查看源代码
)
返回
半指數函數
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息