查看“︁勒贝格控制收敛定理”︁的源代码
←
勒贝格控制收敛定理
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{NoteTA|G1=Math}} '''[[勒貝格]]控制收斂定理'''也稱勒貝格受制收斂定理,({{lang-en| Lebesgue's dominated convergence theorem}}),在[[数学分析]]和[[测度论]]中,這個定理給予了[[积分]]运算和极限运算可以交换顺序的條件。對[[逐点收敛]]的[[函数]]序列而言,其積分運算和收敛的极限運算未必一定可以交换。控制收敛定理说明了,如果[[逐点收敛]]的[[函数]]序列中的每個函數都能被同一个[[勒贝格积分|勒贝格可积]]的函数「控制」(即在每一點,序列中的每個函數的[[绝对值]]都小于「控制函數」),那么[[函数]]序列的极限函数的勒贝格积分等于函数序列中每个函数的勒贝格积分的极限。勒贝格控制收敛定理显示出勒贝格积分相比于[[黎曼积分]]的优越性,在数学分析和实变函数论中有很大的应用。 ==叙述== 设<math>(S,\Sigma,\mu)</math>为一个[[测度空间]], <math>(f_n)_{n\geq 0}</math>是一个实值的[[可测函数]]列。如果<math>(f_n)</math>[[逐点收敛]]于一个函数<math>f</math>,并存在一个[[勒贝格积分|勒贝格可积]]的函数<math>g\in L^1</math>,使得对每个<math>n\geq 0</math>,任意<math>x\in S</math>,都有 :<math> |f_n(x)| \le g(x)</math>, 则: #<math>f</math>也是勒贝格可积的,<math>f\in L^1</math>; #<math> \int_S f d\mu = \int_S \lim_{n\to\infty} f_n\,d\mu=\lim_{n\to\infty}\int_S f_n\,d\mu. </math> 其中的函数<math>g</math>一般取为正值函数。函数列<math>(f_n)_{n \ge 0}</math>的逐点收敛和<math> |f_n(x)| \le g(x)</math>的性质可以减弱为<math>\mu -</math>[[几乎处处]]成立。 ==证明== 勒贝格控制收敛定理是更广泛的法图-勒贝格定理({{lang|en|Fatou–Lebesgue theorem}})的特例。以下是一个引用[[法图引理]]的证明。 由于 <math>f</math> 是<math>(f_n)</math>逐点收敛的极限,因此对其仍然有 :<math>\forall x \in S \ |f(x)| \le g(x)</math>(于是<math>\scriptstyle f \in L^1</math>)。 同理,对任意的<math>n</math>有: :<math>|f-f_n|\le 2g</math> 以及 :<math> \limsup_{n\to\infty}|f-f_n|=0. </math> 根据反向的[[法图引理]], :<math> \limsup_{n\to\infty}\int_S|f-f_n|\,d\mu \le\int_S\limsup_{n\to\infty}|f-f_n|\,d\mu=0. </math> 因此,由[[勒贝格积分]]的线性性和单调性,就有 :<math> \biggl|\int_Sf\,d\mu-\int_Sf_n\,d\mu\biggr| =\biggl|\int_S(f-f_n)\,d\mu\biggr| \le\int_S|f-f_n|\,d\mu, </math> 而后者趋于0,于是定理得证。 ==控制函数的必要性== 控制收敛定理能够成立的一个重要因素是存在一个可积的函数,使得函数列收敛的过程能够“安全”进行。如果缺少这个条件,调换运算次序就可能会导致各种后果。下面是一个例子: 定义函数<math>f_n</math>为:对于<math>(0,\frac{1}{n}]</math>中的<math>x</math> ,<math>f_n(x)=n</math>。对于<math>(\frac{1}{n},1]</math>中的<math>x</math> ,<math>f_n(x)=0</math> 。对<math>(0,1]</math> 中的任意<math>x</math> ,当<math>n</math>趋于无穷大时,<math>f_n(x)</math>总趋于零,同时<math>f_n</math>在<math>(0,1]</math>上的积分总是1。结果是: :<math> \int_0^1\lim_{n\to\infty} f_n(x)\,dx =0\neq 1=\lim_{n\to\infty}\int_0^1 f_n(x)\,dx, </math> 控制收敛定理不成立。原因是不存在可积的控制函数:定义<math>h= \mathrm{sup}_n f_n</math>为:对<math>(0,1]</math>中每一点<math>x</math>, <math>h(x) = \sup_{n \ge 0} f_n (x)</math>。那么在<math>\Bigl(\frac{1}{n+1},\frac{1}{n}\Bigl]</math>上<math>h(x)= n</math> 。于是如果存在控制函数<math>g</math>,那么 <math>g \ge h</math>,但是 :<math> \int_0^1 h(x)\,dx \ge\int_{1/m}^1 h(x)\,dx =\sum_{n=1}^{m-1}\int_{\left(\frac1{n+1},\frac1n\right]}n\,dx =\sum_{n=1}^{m-1}\frac1{n+1} \to\infty\quad</math> (当 <math>m\to\infty</math> 时) 也就是说<math>g</math>不可积。 由此可见,可积的控制函数是定理成立的必需条件。 ==参见== *[[勒贝格积分]] *[[一致可积]] ==参考资料== * R.G. Bartle, "The Elements of Integration and Lebesgue Measure", Wiley Interscience, 1995. * H.L. Royden, "Real Analysis", Prentice Hall, 1988. * D. Williams, "Probability with Martingales", Cambridge University Press, 1991, ISBN 0-521-40605-6 {{Authority control}} [[Category:实分析定理]] [[Category:测度论定理]] [[Category:機率論定理]] [[Category:包含证明的条目]]
该页面使用的模板:
Template:Authority control
(
查看源代码
)
Template:Lang
(
查看源代码
)
Template:Lang-en
(
查看源代码
)
Template:NoteTA
(
查看源代码
)
返回
勒贝格控制收敛定理
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息