查看“︁刻宽”︁的源代码
←
刻宽
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
[[图论]]中,图的'''刻宽'''(carving width)是由图定义的数,描述了图顶点的[[层次聚类]]中,分隔聚类的边数。 ==定义与例子== 刻宽是根据给定图顶点的分层聚类(称作“刻”,carving)定义的。刻可以描述为[[无根二叉树]],其叶上标有给定图的顶点。从树上移除任意一条边,都会将树分为两子树,并相应地将树上顶点分为两簇。这样形成的顶点簇构成了层状集合族(Laminar set family):任意两顶点簇(不仅是移除同一条边形成的两互补簇)或不交,或是包含关系。这样定义的刻宽是连接两互补簇的最大边数。图的刻宽是任何层次聚类的最小刻宽。{{r|seytho}} 刻宽恰为1的图是[[匹配 (图论)|匹配]]。刻宽为2的图是[[道路 (图论)|径图]]与[[循环图]]的不交并形成的图。刻宽为3的图是次立方部分2树,这意味着其最大度为3,并是[[系列平行图]]的子图。其他图的刻宽至少为4。{{r|bhkpt}} ==计算复杂度== 刻宽的计算总的来说是[[NP困难]]的,但在[[平面图]]中可用多项式时间计算。{{r|seytho}}其近似率与平衡[[割]]的近似率相仿,{{r|kry}}目前的最佳近似率为<math>O(\sqrt{\log n})</math>。{{r|arv}}它还是[[固定参数可解]]的:对定值<math>k</math>,测试刻宽是否不大于''k'',若是,则找到实现此宽度的分层聚类可在[[时间复杂度#线性时间|线性时间]]内完成。{{r|tsb}}总的来说,在''n''个顶点、''m''条边的[[重图]]上精确计算刻宽可在<math>O(2^n n^3\log n\log\log n\log m)</math>的时间内完成。{{r|oum}} ==相关参数== 刻宽是衡量给定图“有多像树”的几个图宽度参数之一,还有[[树宽]]、[[枝宽]]等。图的枝宽的定义也使用了分层聚类,但使用的是图的边,而非顶点,这些称作[[枝分解]]。 将边附着到端点之一、并将刻的每片叶扩展为表示其附着的边的子树,可以将图的刻转换为枝分解。用这种结构可以证明,对任何图,刻宽都不小于枝宽的一半,并不大于度乘枝宽。由于树宽与枝宽总是互为常因子,因此可用类似的边界,将刻宽与树宽联系起来。{{r|eppstein}} [[割宽]]由图中跨越割的边数决定,其定义使用了图中顶点的线性排序,以及在此排序中分隔前后子集的分隔系统。{{r|tsb}}不同于刻宽,这分隔系统不包括将顶点与其余顶点分隔,于是(虽然使用了更受限的割族),割宽可以小于刻宽。然而刻宽总不大于割宽与图最大度两者中的较大值。{{r|eppstein}} ==参考文献== {{reflist|refs= <ref name=arv>{{citation | last1 = Arora | first1 = Sanjeev | author1-link = Sanjeev Arora | last2 = Rao | first2 = Satish | author2-link = Satish Rao | last3 = Vazirani | first3 = Umesh | author3-link = Umesh Vazirani | doi = 10.1145/1502793.1502794 | issue = 2 | journal = [[Journal of the ACM]] | mr = 2535878 | page = A5:1–A5:37 | title = Expander flows, geometric embeddings and graph partitioning | url = https://people.eecs.berkeley.edu/~vazirani/pubs/arvfull.pdf | volume = 56 | year = 2009 | s2cid = 263871111 | accessdate = 2024-01-30 | archive-date = 2022-12-07 | archive-url = https://web.archive.org/web/20221207175519/https://people.eecs.berkeley.edu/~vazirani/pubs/arvfull.pdf | dead-url = no }}</ref> <ref name=bhkpt>{{citation | last1 = Belmonte | first1 = Rémy | last2 = van 't Hof | first2 = Pim | last3 = Kamiński | first3 = Marcin | last4 = Paulusma | first4 = Daniël | last5 = Thilikos | first5 = Dimitrios M. | doi = 10.1016/j.dam.2013.02.036 | issue = 13–14 | journal = [[Discrete Applied Mathematics]] | mr = 3056995 | pages = 1888–1893 | title = Characterizing graphs of small carving-width | volume = 161 | year = 2013| doi-access = free }}</ref> <ref name=eppstein>{{citation | last = Eppstein | first = David | author-link = David Eppstein | doi = 10.7155/jgaa.00468 | issue = 3 | journal = Journal of Graph Algorithms & Applications | pages = 461–481 | title = The effect of planarization on width | volume = 22 | year = 2018| arxiv = 1708.05155 | s2cid = 28517765 }}</ref> <ref name=kry>{{citation | last1 = Khuller | first1 = Samir | last2 = Raghavachari | first2 = Balaji | last3 = Young | first3 = Neal | date = April 1994 | doi = 10.1016/0020-0190(94)90044-2 | issue = 1 | journal = Information Processing Letters | pages = 49–55 | title = Designing multi-commodity flow trees | volume = 50| arxiv = cs/0205077 }}</ref> <ref name=oum>{{citation | last = Oum | first = Sang-il | doi = 10.1016/j.ipl.2009.03.018 | issue = 13 | journal = Information Processing Letters | mr = 2527717 | pages = 745–748 | title = Computing rank-width exactly | volume = 109 | year = 2009| citeseerx = 10.1.1.483.6708 }}</ref> <ref name=seytho>{{citation | last1 = Seymour | first1 = Paul D. | author1-link = Paul Seymour (mathematician) | last2 = Thomas | first2 = Robin | doi = 10.1007/BF01215352 | issue = 2 | journal = Combinatorica | pages = 217–241 | title = Call routing and the ratcatcher | volume = 14 | year = 1994| s2cid = 7508434 }}</ref> <ref name=tsb>{{citation | last1 = Thilikos | first1 = Dimitrios M. | last2 = Serna | first2 = Maria J. | author2-link = Maria Serna | last3 = Bodlaender | first3 = Hans L. | author3-link = Hans L. Bodlaender | editor1-last = Lee | editor1-first = D. T. | editor2-last = Teng | editor2-first = Shang-Hua | contribution = Constructive linear time algorithms for small cutwidth and carving-width | doi = 10.1007/3-540-40996-3_17 | pages = 192–203 | publisher = Springer | series = Lecture Notes in Computer Science | title = Algorithms and Computation, 11th International Conference, ISAAC 2000, Taipei, Taiwan, December 18-20, 2000, Proceedings | volume = 1969 | isbn = 978-3-540-41255-7 | year = 2000}}</ref> }} [[Category:图论]] [[Category:图常量]]
该页面使用的模板:
Template:R
(
查看源代码
)
Template:Reflist
(
查看源代码
)
返回
刻宽
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息