查看“︁分区问题”︁的源代码
←
分区问题
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{Expand language|1=en|time=2022-03-01T05:21:12+00:00}} '''分区问题'''({{lang-en|Partition problem}})是[[数论]]和[[计算机科学]]领域的问题,{{sfn|Korf|1998}}目的是把一个多重集<math>S</math>分为<math>S_1</math>和<math>S_2</math>两个子集,要求<math>S_1</math>和<math>S_2</math>这两个集合中所有数的和相等。尽管分区问题属于[[NP完全]]问题,但是依然存在[[伪多项式时间]]的动态规划解法,而且在很多情况下也存在启发式的解法,能够求出最优解或近似最优解。正是基于这一点,这类问题也被称为“最简单的难题”。<ref name=hayes>{{citation |jstor=27857621 |title=The Easiest Hard Problem |volume=90 |issue=2 |pages=113–117 |magazine=[[American Scientist]] |last=Hayes |first=Brian |author-link=Brian Hayes (scientist) |date=March–April 2002 |publisher=Sigma Xi, The Scientific Research Society |url=http://bit-player.org/bph-publications/AmSci-2002-03-Hayes-NPP.pdf |accessdate=2022-03-01 |archive-date=2012-09-16 |archive-url=https://web.archive.org/web/20120916170626/http://bit-player.org/bph-publications/AmSci-2002-03-Hayes-NPP.pdf |dead-url=no }}</ref>{{sfn|Mertens|2006|p=[https://books.google.com/books?id=4YD6AxV95zEC&pg=PA125 125]}} 分区问题存在一个[[最佳化問題]],该问题是将<math>S</math>分为<math>S_1</math>和<math>S_2</math>,要求<math>S_1</math>中元素的和与<math>S_2</math>中元素的和相差最小。这一问题属于[[NP困难]]问题,但在实践中依旧存在高效的解法。<ref name="multi">{{cite conference |last=Korf |first=Richard E. |title=Multi-Way Number Partitioning |conference=[[IJCAI]] |year=2009 |url=http://ijcai.org/papers09/Papers/IJCAI09-096.pdf |access-date=2022-03-01 |archive-date=2014-11-27 |archive-url=https://web.archive.org/web/20141127074630/http://www.ijcai.org/papers09/Papers/IJCAI09-096.pdf |dead-url=no }}</ref> 分区问题是以下两个相关问题的特殊情况: *[[子集和问题]]:从集合<math>S</math>找到一个子集,使其所有元素的和等于一给定值<math>T</math>(分区问题就是T为<math>S</math>所有元素之和的<math>\frac{1}{2}</math>时的特殊情况) *[[多路数字分区]]:将集合<math>S</math>分为<math>k</math>个子集,要求每个子集的元素之和都相等(分区问题就是<math>k=2</math>时的特殊情况) *但是需要注意的是,三分区问题与分区问题有很大不同,三分区问题要求每个子集中都有3个元素。三分区问题比分区问题更难,甚至连伪多项式时间算法都不存在,除非满足[[P=NP]]。<ref name="Garey & Johnson">{{cite book|last1=Garey|first1=Michael|url=https://archive.org/details/computersintract0000gare|title=Computers and Intractability; A Guide to the Theory of NP-Completeness|last2=Johnson|first2=David|year=1979|isbn=978-0-7167-1045-5|pages=[https://archive.org/details/computersintract0000gare/page/96 96–105]}}</ref> ==实例== 现有多重集<math>S={3,1,1,2,2,1}</math>,可以被分为<math>S_1={1,1,1,2}</math>以及<math>S_2={2,3}</math>,两者元素之和皆为5。 ==注释== {{reflist}} ==参考文献== *{{Citation | doi = 10.1002/rsa.10004 | volume = 19 | issue = 3–4 | pages = 247–288 | last1 = Borgs | first1 = Christian | last2 = Chayes | first2 = Jennifer | last3 = Pittel | first3 = Boris | title = Phase transition and finite-size scaling for the integer partitioning problem | journal = Random Structures and Algorithms | year = 2001 | citeseerx = 10.1.1.89.9577 }} *{{cite conference | last1 = Gent | first1 = Ian | last2 = Walsh | first2 = Toby | title = Phase Transitions and Annealed Theories: Number Partitioning as a Case Study |date=August 1996 | editor = Wolfgang Wahlster | book-title = Proceedings of 12th European Conference on Artificial Intelligence |conference=ECAI-96 | publisher = John Wiley and Sons | pages = 170–174 | citeseerx = 10.1.1.2.4475 }} *{{Citation | last1 = Gent | first1 = Ian | last2 = Walsh | first2 = Toby | title = Analysis of Heuristics for Number Partitioning | year = 1998 | journal = Computational Intelligence | volume = 14 | issue = 3 | pages = 430–451 | doi = 10.1111/0824-7935.00069 | citeseerx = 10.1.1.149.4980 | s2cid = 15344203 }} * {{Citation | doi = 10.1016/S0004-3702(98)00086-1 | issn = 0004-3702 | volume = 106 | issue = 2 | pages = 181–203 | last = Korf | first = Richard E. | title = A complete anytime algorithm for number partitioning | journal = Artificial Intelligence | year = 1998 | citeseerx = 10.1.1.90.993 }} *{{Citation | doi = 10.1103/PhysRevLett.81.4281 | volume = 81 | issue = 20 | pages = 4281–4284 | last = Mertens | first = Stephan | title = Phase Transition in the Number Partitioning Problem | journal = Physical Review Letters | date = November 1998 | bibcode=1998PhRvL..81.4281M |arxiv = cond-mat/9807077 | s2cid = 119541289 }} * {{Citation | doi = 10.1016/S0304-3975(01)00153-0 | last = Mertens | first = Stephan | title = A physicist's approach to number partitioning | journal = Theoretical Computer Science | volume = 265 | issue = 1–2 | pages = 79–108| year = 2001 | arxiv = cond-mat/0009230 | s2cid = 16534837 }} *{{cite book |year=2006 |chapter=The Easiest Hard Problem: Number Partitioning |last=Mertens |first=Stephan |title=Computational complexity and statistical physics |editor1=Allon Percus |editor2=Gabriel Istrate |editor3=Cristopher Moore |editor3-link=Cris Moore |publisher=Oxford University Press |place=USA |isbn=9780195177374 |pages=125–140 |chapter-url=https://books.google.com/books?id=4YD6AxV95zEC&pg=PA125 |arxiv=cond-mat/0310317 |bibcode=2003cond.mat.10317M |access-date=2022-03-01 |archive-date=2017-04-05 |archive-url=https://web.archive.org/web/20170405181738/https://books.google.com/books?id=4YD6AxV95zEC&pg=PA125 |dead-url=no }} *{{cite arXiv | last = Mertens | first = Stephan | title = A complete anytime algorithm for balanced number partitioning| pages = | year = 1999 | eprint = cs/9903011 | mode = cs2 }} [[Category:NP完全问题]]
该页面使用的模板:
Template:Citation
(
查看源代码
)
Template:Cite arXiv
(
查看源代码
)
Template:Cite book
(
查看源代码
)
Template:Cite conference
(
查看源代码
)
Template:Expand language
(
查看源代码
)
Template:Lang-en
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:Sfn
(
查看源代码
)
返回
分区问题
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息