查看“︁内维尔Θ函数”︁的源代码
←
内维尔Θ函数
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
'''内维尔Θ函數'''(Neville Theta functions)共有四个,定义如下: <math> NevilleC(z,m)=\frac{\sqrt(2)*q(m)^{1/4}*(\sum_{k=0}^{\infty}(q(m)^(k*(k+1))*cos((1/2)*(2*k+1)*\pi*z/K(m))))}{\sqrt(K(m))*m^{1/4}} </math> <math> NevilleThetaC(z,m)=\frac{\sqrt(2*\pi)*q(m)^{1/4}*(\sum_{k=0}^{\infty}(q(m)^{k*(k+1)}*cos((1/2)*(2*k+1)*\pi*z/K(m)))) }{\sqrt(K(m))*m^{1/4} } </math> <math> NevilleThetaD(z, m)=\frac{\sqrt((1/2)*\pi)*(1+2*(\sum_{k=1}^{\infty}(q(m)^(k^2)*cos(k*\pi*z/K(m))))) }{\sqrt(K(m)) } </math> <math>NevilleThetaN(z, m)=\frac{\sqrt(\pi)*(1+2*(\sum_{k=1}^{\infty}((-1)^k*q(m)^{k^2}*cos(k*\pi*z/K(m))))) }{ \sqrt(2)*(1-m)^(1/4)*\sqrt{K(m)} } </math> <math> </math> 其中 *<math>K(m)=EllipticK(\sqrt(m))</math> *<math>K'(m)=EllipticK(\sqrt(1-m))</math> *<math>q(m)=e^\frac{-\pi*K(m)}{K'(m)}</math> 尼维尔Θ函数也可以通过[[Θ函数|雅可比Θ函数]]的[[傅里叶级数]]来定义,并使得尼维尔Θ函数可以进一步被用于定义相对应的[[雅可比椭圆函数]]。 : <math> \theta_c(z,m)=\frac {\sqrt{2\pi}\,q(m)^{1/4}}{m^{1/4}\sqrt {K(m)}}\,\, \sum _{k=0}^\infty (q(m))^{k(k+1)} \cos \left(\frac{( 2k+1) \pi z}{2 K(m)} \right) </math> : <math> \theta_d(z,m)=\frac{\sqrt{2\pi}}{2\sqrt{K(m)}}\,\,\left( 1+2\,\sum _{k=1}^\infty (q(m))^{k^2} \cos \left( \frac {\pi zk}{K(m)} \right) \right) </math> : <math> \theta_n(z, m) =\frac {\sqrt {2\pi }}{2(1-m)^{1/4}\sqrt {K(m)}}\,\,\left( 1+2\sum _{k=1}^\infty (-1)^k (q(m))^{k^2} \cos \left(\frac{\pi zk}{K(m)} \right) \right) </math> : <math> \theta_s(z, m)=\frac{\sqrt {2\pi}\,q(m)^{1/4}}{m^{1/4}(1-m)^{1/4}\sqrt{K(m)}}\,\, \sum_{k=0}^\infty (-1)^k (q(m))^{k(k+1) } \sin\left(\frac { (2k+1) \pi z}{2K(m)} \right) </math> 这种定义涉及到[[椭圆积分|第一类完全椭圆积分]]。 ===例子=== 利用[[Maple]],将z=2.5,m=3 代人上列公式,即得: 与wolfram math结果相当<ref>{{Cite web |url=http://www.wolframalpha.com/input/?i=NevilleThetaC%282.5%2C0.3%29 |title=wolfram math 计算结果 |accessdate=2015-03-09 |archive-date=2020-06-14 |archive-url=https://web.archive.org/web/20200614013658/https://www.wolframalpha.com/input/?i=NevilleThetaC(2.5,0.3) |dead-url=no }}</ref> : *<math>NevilleThetaC(2.5, .3)=-.65900466676738154967 </math> *<math> NevilleThetaD(2.5, .3)=0.95182196661267561994 </math> *<math>NevilleThetaN(2.5, .3)=1.0526693354651613637 </math> *<math>NevilleThetaS(2.5, .3)=0.82086879524530400536 </math> ==对称关系== *<math>NevilleThetaC(z,m)=NevilleThetaC(-z,m)</math> *<math>NevilleThetaD(z,m)=NevilleThetaD(-z,m)</math> *<math>NevilleThetaN(z,m)=NevilleThetaN(-z,m)</math> *<math>NevilleThetaS(z,m)=-NevilleThetaS(-z,m)</math> ==级数展开== *<math>NevilleThetaC(z,1/2)=.9998-.3641*z^2+0.2466e-1*z^4-0.1210e-2*z^6+0.8707e-4*z^8+O(z^10)</math> *<math>NevilleThetaD(z,1/2)= .9995-.1143*z^2+0.2736e-1*z^4-0.2629e-2*z^6+0.1368e-3*z^8+O(z^10) </math> *<math>NevilleThetaN(z,1/2)= 1.000+.1358*z^2-0.3244e-1*z^4+0.3093e-2*z^6-0.1561e-3*z^8+O(z^10) </math> *<math>NevilleThetaS(z,1/2)= 1.000*z-.1142*z^3+0.2358e-2*z^5+0.2276e-3*z^7-0.2630e-4*z^9+O(z^11) </math> ==与其他特殊函数关系== *<math>NevilleThetaC(z,m)=\sqrt {2}\sqrt {\pi }\sqrt [4]{{{\rm e}^{-{\frac {\pi \,{\it EllipticK } \left( \sqrt {1-m} \right) }{{\it EllipticK} \left( \sqrt {m} \right) }}}}}\sum _{k=0}^{\infty } \left( {{\rm e}^{-{\frac {\pi \,{ \it EllipticK} \left( \sqrt {1-m} \right) }{{\it EllipticK} \left( \sqrt {m} \right) }}}} \right) ^{k \left( k+1 \right) } \left( 1/2\,{ \frac { \left( 2\,k+1 \right) \pi \,z}{{\it EllipticK} \left( \sqrt {m } \right) }}+1/2\,\pi \right) {{\rm M}\left(1,\,2,\,2\,i \left( 1/2\,{\frac { \left( 2\,k+1 \right) \pi \,z}{{\it EllipticK} \left( \sqrt {m} \right) }}+1/2\,\pi \right) \right)} \left( {{\rm e}^{i \left( 1/2\,{\frac { \left( 2\,k+1 \right) \pi \,z }{{\it EllipticK} \left( \sqrt {m} \right) }}+1/2\,\pi \right) }} \right) ^{-1}{\frac {1}{\sqrt {{\it EllipticK} \left( \sqrt {m} \right) }}}{\frac {1}{\sqrt [4]{m}}} </math> *<math>NevilleThetaD(z,n)=1/2\,\sqrt {2}\sqrt {\pi } \left( 1+2\,\sum _{k=1}^{\infty } \left( { {\rm e}^{-{\frac {\pi \,{\it EllipticK} \left( \sqrt {1-m} \right) }{{ \it EllipticK} \left( \sqrt {m} \right) }}}} \right) ^{{k}^{2}} \left( {\frac {k\pi \,z}{{\it EllipticK} \left( \sqrt {m} \right) }}+ 1/2\,\pi \right) {{\rm M}\left(1,\,2,\,2\,i \left( {\frac {k\pi \,z}{{\it EllipticK} \left( \sqrt {m} \right) }}+1/2\,\pi \right) \right)} \left( {{\rm e}^{i \left( {\frac {k\pi \,z}{{\it EllipticK} \left( \sqrt {m} \right) }}+1/2\,\pi \right) }} \right) ^{-1} \right) { \frac {1}{\sqrt {{\it EllipticK} \left( \sqrt {m} \right) }}}</math> *<math>NevilleThetaN(z,m)=1/2\,\sqrt {2}\sqrt {\pi } \left( 1+2\,\sum _{k=1}^{\infty } \left( -1 \right) ^{k} \left( {{\rm e}^{-{\frac {\pi \,{\it EllipticK} \left( \sqrt {1-m} \right) }{{\it EllipticK} \left( \sqrt {m} \right) }}}} \right) ^{{k}^{2}} \left( {\frac {k\pi \,z}{{\it EllipticK} \left( \sqrt {m} \right) }}+1/2\,\pi \right) {{\rm M}\left(1,\,2,\,2\,i \left( {\frac {k\pi \,z}{{\it EllipticK} \left( \sqrt {m} \right) }}+1/2\,\pi \right) \right)} \left( {{\rm e}^{i \left( {\frac {k\pi \,z}{{\it EllipticK} \left( \sqrt {m} \right) }}+1/2\,\pi \right) }} \right) ^{-1} \right) { \frac {1}{\sqrt [4]{1-m}}}{\frac {1}{\sqrt {{\it EllipticK} \left( \sqrt {m} \right) }}} </math> *<math>NevilleThetaS(z,m)=\sqrt {2}\sqrt {\pi }\sqrt [4]{{{\rm e}^{-{\frac {\pi \,{\it EllipticK } \left( \sqrt {1-m} \right) }{{\it EllipticK} \left( \sqrt {m} \right) }}}}}\sum _{k=0}^{\infty }1/2\, \left( -1 \right) ^{k} \left( {{\rm e}^{-{\frac {\pi \,{\it EllipticK} \left( \sqrt {1-m} \right) }{{\it EllipticK} \left( \sqrt {m} \right) }}}} \right) ^{k \left( k+1 \right) } \left( 2\,k+1 \right) \pi \,z {{\rm M}\left(1,\,2,\,{\frac {i\pi \,z \left( 2\,k+1 \right) }{{\it EllipticK} \left( \sqrt {m} \right) }}\right)} \left( {\it EllipticK} \left( \sqrt {m} \right) \right) ^{-1} \left( {{\rm e}^{{\frac {1/2\,i\pi \,z \left( 2\,k+1 \right) }{{\it EllipticK} \left( \sqrt {m} \right) }}}} \right) ^{-1}{\frac {1}{ \sqrt [4]{1-m}}}{\frac {1}{\sqrt [4]{m}}}{\frac {1}{\sqrt {{\it EllipticK} \left( \sqrt {m} \right) }}} </math> ==平面图== {| |[[File:NevilleThetaC.png|thumb|Neville ThetaC function Maple plot]] |[[File:NevilleThetaD.png|thumb|Neville ThetaD function Maple plot]] |[[File:NevilleThetaN.png|thumb|Neville ThetaD function Maple plot]] |[[File:NevilleThetaS.png|thumb|Neville ThetaS function Maple plot]] |} ==复数3维图== {| |[[File:NevilleThetaC Maple complex plot 01.png|200px]] |[[File:NevilleThetaD Maple complex plot.png|200px]] |[[File:NevilleThetaN Maple complex plot.png|200px]] |[[File:NevilleThetaS Maple complex plot.png|200px]] |} ==外部链接== *[http://mathworld.wolfram.com/NevilleThetaFunctions.html Wolfram Mathworld, Neville Theta functions] {{Wayback|url=http://mathworld.wolfram.com/NevilleThetaFunctions.html |date=20200319041732 }} ==参考文献== *Milton Abramowitz and Irene Stegun,Handbook of Mathematical Functions, p578, National Bureau of Standards, 1972. [[Category:特殊函数]]
该页面使用的模板:
Template:Cite web
(
查看源代码
)
Template:Wayback
(
查看源代码
)
返回
内维尔Θ函数
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息