查看“︁亨特 - 萨克斯顿方程”︁的源代码
←
亨特 - 萨克斯顿方程
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
[[File:Hunter Saxton nlpde plot.gif|thumb|right|300px|亨特 - 萨克斯顿方程 Maple 动画]] '''亨特 - 萨克斯顿方程'''(Hunter–Saxton equation)是一个模拟向列型液晶中波动传播的非线性偏微分方程: :<math> (u_t + u u_x)_x = \frac{1}{2} \, u_x^2 </math> ==解析解== 亨特 - 萨克斯顿方程有解析解<ref>Anders Samuelsen Nordli On the Hunter-Saxton equation,Norwegian University of Science and Technology,p38, June 2012</ref>: <math>u(x,t)=\frac{1}{1-t/2}*(x-t)+1</math> 此外,[[Maple]]软件包 TWSolution 给出多个行波解: ;tanh 展开法 <math>f1 := u(x, t) = -1.7045454545454545454+1.1363636363636363636*(-(1/4)*(6.336*ln(tanh(2.3+.88*x+1.5*t)-1)-6.336*ln(tanh(2.3+.88*x+1.5*t)+1)+9.2928)^(1/3)-(1/4*I)*sqrt(3)*(6.336*ln(tanh(2.3+.88*x+1.5*t)-1)-6.336*ln(tanh(2.3+.88*x+1.5*t)+1)+9.2928)^(1/3))^2</math> <math>f2 := u(x, t) = -1.7045454545454545454+1.1363636363636363636*(-(1/4)*(6.336*ln(tanh(2.3+.88*x+1.5*t)-1)-6.336*ln(tanh(2.3+.88*x+1.5*t)+1)+9.2928)^(1/3)+(1/4*I)*sqrt(3)*(6.336*ln(tanh(2.3+.88*x+1.5*t)-1)-6.336*ln(tanh(2.3+.88*x+1.5*t)+1)+9.2928)^(1/3))^2</math> <math>u(x, t) = -1.7045454545454545454 + 0.28409090909090909090 (6.336 ln(tanh(2.3 + 0.88 x + 1.5 t) - 1) - 6.336 ln(tanh(2.3 + 0.88 x + 1.5 t) + 1) + 9.2928)^(2/3)</math> 其中 f1、f2 是重解,因此,只有两个独立的行波解。 [[File:TWS Hunter Saxton animation1.gif|thumb|center|300px|Hunter Saxton equation Maple TWSolution travelling wave solution1]] [[File:TWS Hunter Saxton travelling wave animation3.gif|thumb|center|300px|Hunter Saxton equation travelling wave solution3 with Maple TWSolution package]] ;sech arctan 展开法 <math>f[1] := -.20000000000000000000+(1/12)*(-(36*(1.3*arctan(1/sqrt(sech(2+3*x+.6*t)^2-1))*sqrt(sech(2+3*x+.6*t)+1)*sqrt(sech(2+3*x+.6*t)-1)-2.6*sqrt(sech(2+3*x+.6*t)^2-1)))/sqrt(sech(2+3*x+.6*t)^2-1))^(2/3)</math> <math>f[2] := -.20000000000000000000+(1/3)*(-(1/4)*(-(36*(1.3*arctan(1/sqrt(sech(2+3*x+.6*t)^2-1))*sqrt(sech(2+3*x+.6*t)+1)*sqrt(sech(2+3*x+.6*t)-1)-2.6*sqrt(sech(2+3*x+.6*t)^2-1)))/sqrt(sech(2+3*x+.6*t)^2-1))^(1/3)-(1/4*I)*sqrt(3)*(-(36*(1.3*arctan(1/sqrt(sech(2+3*x+.6*t)^2-1))*sqrt(sech(2+3*x+.6*t)+1)*sqrt(sech(2+3*x+.6*t)-1)-2.6*sqrt(sech(2+3*x+.6*t)^2-1)))/sqrt(sech(2+3*x+.6*t)^2-1))^(1/3))^2</math> <math>f[3] := -.20000000000000000000+(1/3)*(-(1/4)*(-(36*(1.3*arctan(1/sqrt(sech(2+3*x+.6*t)^2-1))*sqrt(sech(2+3*x+.6*t)+1)*sqrt(sech(2+3*x+.6*t)-1)-2.6*sqrt(sech(2+3*x+.6*t)^2-1)))/sqrt(sech(2+3*x+.6*t)^2-1))^(1/3)+(1/4*I)*sqrt(3)*(-(36*(1.3*arctan(1/sqrt(sech(2+3*x+.6*t)^2-1))*sqrt(sech(2+3*x+.6*t)+1)*sqrt(sech(2+3*x+.6*t)-1)-2.6*sqrt(sech(2+3*x+.6*t)^2-1)))/sqrt(sech(2+3*x+.6*t)^2-1))^(1/3))^2</math> <math>f[4] := -.20000000000000000000+(1/3)*(-(1/4)*(187.2+140.4*x+28.08*t)^(1/3)-(1/4*I)*sqrt(3)*(187.2+140.4*x+28.08*t)^(1/3))^2</math> <math>f[5] := -.20000000000000000000+(1/3)*(-(1/4)*(187.2+140.4*x+28.08*t)^(1/3)+(1/4*I)*sqrt(3)*(187.2+140.4*x+28.08*t)^(1/3))^2</math> <math>f[6] := -.20000000000000000000+(1/12)*(187.2+140.4*x+28.08*t)^(2/3)</math> <math><f[7] := -1.6666666666666666667*_C6+1.6666666666666666667*(-(1/4)*(9.36*Intat(1/sqrt(4*_a^4-5*_a^2+1), _a = JacobiSN(3+.6*x+_C6*t, 2))+18.72)^(1/3)-(1/4*I)*sqrt(3)*(9.36*Intat(1/sqrt(4*_a^4-5*_a^2+1), _a = JacobiSN(3+.6*x+_C6*t, 2))+18.72)^(1/3))^2</math> <math>f[8] := -1.6666666666666666667*_C6+1.6666666666666666667*(-(1/4)*(9.36*Intat(1/sqrt(4*_a^4-5*_a^2+1), _a = JacobiSN(3+.6*x+_C6*t, 2))+18.72)^(1/3)+(1/4*I)*sqrt(3)*(9.36*Intat(1/sqrt(4*_a^4-5*_a^2+1), _a = JacobiSN(3+.6*x+_C6*t, 2))+18.72)^(1/3))^2</math> <math>f[9] := -1.6666666666666666667*_C6+.41666666666666666668*(9.36*Intat(1/sqrt(4*_a^4-5*_a^2+1), _a = JacobiSN(3+.6*x+_C6*t, 2))+18.72)^(2/3)</math> {{Gallery |width=250 |height=200 |align=center |File:Hunter Saxton extended plot1.gif|f1 |File:Hunter Saxton extended plot2.gif|f2 |File:Hunter Saxton extended plot3.gif|f3 |File:Hunter Saxton extended plot4.gif|f4 |File:Hunter Saxton extended plot5.gif|f5 |File:Hunter Saxton extended plot6.gif|f6 }} File:Hunter Saxton extended plot1.gif ;综合展开 <math>p[12] := -1.0714+.71429*(-.50821*((1.1*ln(cos(1.3+1.4*x+1.5*t)+sqrt(cos(1.3+1.4*x+1.5*t)^2-1.))*sqrt((cos(1.3+1.4*x+1.5*t)-1.)*(cos(1.3+1.4*x+1.5*t)+1.))+1.2*sqrt(cos(1.3+1.4*x+1.5*t)+1.)*sqrt(cos(1.3+1.4*x+1.5*t)-1.))*(1.+sqrt(1/((cos(1.3+1.4*x+1.5*t)-1.)*(cos(1.3+1.4*x+1.5*t)+1.)))*sqrt(cos(1.3+1.4*x+1.5*t)-1.)*sqrt(cos(1.3+1.4*x+1.5*t)+1.))/(sqrt(cos(1.3+1.4*x+1.5*t)+1.)*sqrt(cos(1.3+1.4*x+1.5*t)-1.)))^(1/3)-(.88026*I)*((1.1*ln(cos(1.3+1.4*x+1.5*t)+sqrt(cos(1.3+1.4*x+1.5*t)^2-1.))*sqrt((cos(1.3+1.4*x+1.5*t)-1.)*(cos(1.3+1.4*x+1.5*t)+1.))+1.2*sqrt(cos(1.3+1.4*x+1.5*t)+1.)*sqrt(cos(1.3+1.4*x+1.5*t)-1.))*(1.+sqrt(1/((cos(1.3+1.4*x+1.5*t)-1.)*(cos(1.3+1.4*x+1.5*t)+1.)))*sqrt(cos(1.3+1.4*x+1.5*t)-1.)*sqrt(cos(1.3+1.4*x+1.5*t)+1.))/(sqrt(cos(1.3+1.4*x+1.5*t)+1.)*sqrt(cos(1.3+1.4*x+1.5*t)-1.)))^(1/3))^2</math> <math>p[13] := -1.0714+.71429*(-.50821*((1.1*ln(cos(1.3+1.4*x+1.5*t)+sqrt(cos(1.3+1.4*x+1.5*t)^2-1.))*sqrt((cos(1.3+1.4*x+1.5*t)-1.)*(cos(1.3+1.4*x+1.5*t)+1.))+1.2*sqrt(cos(1.3+1.4*x+1.5*t)+1.)*sqrt(cos(1.3+1.4*x+1.5*t)-1.))*(1.+sqrt(1/((cos(1.3+1.4*x+1.5*t)-1.)*(cos(1.3+1.4*x+1.5*t)+1.)))*sqrt(cos(1.3+1.4*x+1.5*t)-1.)*sqrt(cos(1.3+1.4*x+1.5*t)+1.))/(sqrt(cos(1.3+1.4*x+1.5*t)+1.)*sqrt(cos(1.3+1.4*x+1.5*t)-1.)))^(1/3)+(.88026*I)*((1.1*ln(cos(1.3+1.4*x+1.5*t)+sqrt(cos(1.3+1.4*x+1.5*t)^2-1.))*sqrt((cos(1.3+1.4*x+1.5*t)-1.)*(cos(1.3+1.4*x+1.5*t)+1.))+1.2*sqrt(cos(1.3+1.4*x+1.5*t)+1.)*sqrt(cos(1.3+1.4*x+1.5*t)-1.))*(1.+sqrt(1/((cos(1.3+1.4*x+1.5*t)-1.)*(cos(1.3+1.4*x+1.5*t)+1.)))*sqrt(cos(1.3+1.4*x+1.5*t)-1.)*sqrt(cos(1.3+1.4*x+1.5*t)+1.))/(sqrt(cos(1.3+1.4*x+1.5*t)+1.)*sqrt(cos(1.3+1.4*x+1.5*t)-1.)))^(1/3))^2</math> :<math>p[16] := -1.0714+.71429*(-.50821*((1.1*ln(sin(1.3+1.4*x+1.5*t)+sqrt(sin(1.3+1.4*x+1.5*t)^2-1.))*sqrt((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.))+1.2*sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.))*(1.+sqrt(1/((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.)))*sqrt(sin(1.3+1.4*x+1.5*t)-1.)*sqrt(sin(1.3+1.4*x+1.5*t)+1.))/(sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.)))^(1/3)-(.88026*I)*((1.1*ln(sin(1.3+1.4*x+1.5*t)+sqrt(sin(1.3+1.4*x+1.5*t)^2-1.))*sqrt((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.))+1.2*sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.))*(1.+sqrt(1/((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.)))*sqrt(sin(1.3+1.4*x+1.5*t)-1.)*sqrt(sin(1.3+1.4*x+1.5*t)+1.))/(sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.)))^(1/3))^2</math> :<math>p[17] := -1.0714+.71429*(-.50821*((1.1*ln(sin(1.3+1.4*x+1.5*t)+sqrt(sin(1.3+1.4*x+1.5*t)^2-1.))*sqrt((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.))+1.2*sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.))*(1.+sqrt(1/((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.)))*sqrt(sin(1.3+1.4*x+1.5*t)-1.)*sqrt(sin(1.3+1.4*x+1.5*t)+1.))/(sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.)))^(1/3)+(.88026*I)*((1.1*ln(sin(1.3+1.4*x+1.5*t)+sqrt(sin(1.3+1.4*x+1.5*t)^2-1.))*sqrt((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.))+1.2*sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.))*(1.+sqrt(1/((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.)))*sqrt(sin(1.3+1.4*x+1.5*t)-1.)*sqrt(sin(1.3+1.4*x+1.5*t)+1.))/(sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.)))^(1/3))^2</math> :<math>p[20] := -1.0714+.71429*(-.64030*((-1.1*arctan(1/sqrt(sec(1.3+1.4*x+1.5*t)^2-1.))*sqrt(sec(1.3+1.4*x+1.5*t)-1.)*sqrt(sec(1.3+1.4*x+1.5*t)+1.)+1.2*sqrt(sec(1.3+1.4*x+1.5*t)^2-1.))/sqrt(sec(1.3+1.4*x+1.5*t)^2-1.))^(1/3)-(1.1091*I)*((-1.1*arctan(1/sqrt(sec(1.3+1.4*x+1.5*t)^2-1.))*sqrt(sec(1.3+1.4*x+1.5*t)-1.)*sqrt(sec(1.3+1.4*x+1.5*t)+1.)+1.2*sqrt(sec(1.3+1.4*x+1.5*t)^2-1.))/sqrt(sec(1.3+1.4*x+1.5*t)^2-1.))^(1/3))^2</math> :<math>p[21] := -1.0714+.71429*(-.64030*((-1.1*arctan(1/sqrt(sec(1.3+1.4*x+1.5*t)^2-1.))*sqrt(sec(1.3+1.4*x+1.5*t)-1.)*sqrt(sec(1.3+1.4*x+1.5*t)+1.)+1.2*sqrt(sec(1.3+1.4*x+1.5*t)^2-1.))/sqrt(sec(1.3+1.4*x+1.5*t)^2-1.))^(1/3)+(1.1091*I)*((-1.1*arctan(1/sqrt(sec(1.3+1.4*x+1.5*t)^2-1.))*sqrt(sec(1.3+1.4*x+1.5*t)-1.)*sqrt(sec(1.3+1.4*x+1.5*t)+1.)+1.2*sqrt(sec(1.3+1.4*x+1.5*t)^2-1.))/sqrt(sec(1.3+1.4*x+1.5*t)^2-1.))^(1/3))^2</math> :<math>p[29] := -1.0714+.73794*((1.1*ln(cos(1.3+1.4*x+1.5*t)+sqrt(cos(1.3+1.4*x+1.5*t)^2-1.))*sqrt((cos(1.3+1.4*x+1.5*t)-1.)*(cos(1.3+1.4*x+1.5*t)+1.))+1.2*sqrt(cos(1.3+1.4*x+1.5*t)+1.)*sqrt(cos(1.3+1.4*x+1.5*t)-1.))*(1.+sqrt(1/((cos(1.3+1.4*x+1.5*t)-1.)*(cos(1.3+1.4*x+1.5*t)+1.)))*sqrt(cos(1.3+1.4*x+1.5*t)-1.)*sqrt(cos(1.3+1.4*x+1.5*t)+1.))/(sqrt(cos(1.3+1.4*x+1.5*t)+1.)*sqrt(cos(1.3+1.4*x+1.5*t)-1.)))^(2/3)</math> :<math>p[31] := -1.0714+.73794*((1.1*ln(sin(1.3+1.4*x+1.5*t)+sqrt(sin(1.3+1.4*x+1.5*t)^2-1.))*sqrt((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.))+1.2*sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.))*(1.+sqrt(1/((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.)))*sqrt(sin(1.3+1.4*x+1.5*t)-1.)*sqrt(sin(1.3+1.4*x+1.5*t)+1.))/(sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.)))^(2/3)</math> :<math>p[32] := -1.0714+1.1714*((-1.1*arctan(1/sqrt(csc(1.3+1.4*x+1.5*t)^2-1.))*sqrt(csc(1.3+1.4*x+1.5*t)-1.)*sqrt(csc(1.3+1.4*x+1.5*t)+1.)+1.2*sqrt(csc(1.3+1.4*x+1.5*t)^2-1.))/sqrt(csc(1.3+1.4*x+1.5*t)^2-1.))^(2/3)</math> :<math>p[33] := -1.0714+1.1714*((-1.1*arctan(1/sqrt(sec(1.3+1.4*x+1.5*t)^2-1.))*sqrt(sec(1.3+1.4*x+1.5*t)-1.)*sqrt(sec(1.3+1.4*x+1.5*t)+1.)+1.2*sqrt(sec(1.3+1.4*x+1.5*t)^2-1.))/sqrt(sec(1.3+1.4*x+1.5*t)^2-1.))^(2/3)</math> :<math><p[34] := -1.0714+1.1714*((-1.1*arctan(1/sqrt(sech(1.3+1.4*x+1.5*t)^2-1.))*sqrt(sech(1.3+1.4*x+1.5*t)-1.)*sqrt(sech(1.3+1.4*x+1.5*t)+1.)+1.2*sqrt(sech(1.3+1.4*x+1.5*t)^2-1.))/sqrt(sech(1.3+1.4*x+1.5*t)^2-1.))^(2/3)</math> :<math></math> :<math></math> :<math></math> :<math></math> :<math></math> :<math></math> :<math></math> :<math></math> :<math></math> {{Gallery |width=250 |height=200 |align=center |File:Hunter Saxton eq traveling wave plot 12.gif|File:Hunter Saxton eq traveling wave plot 12.gif |File:Hunter Saxton eq traveling wave plot 13.gif|File:Hunter Saxton eq traveling wave plot 13.gif |File:Hunter Saxton eq traveling wave plot 16.gif|File:Hunter Saxton eq traveling wave plot 16.gif |File:Hunter Saxton eq traveling wave plot 17.gif|File:Hunter Saxton eq traveling wave plot 17.gif |File:Hunter Saxton eq traveling wave plot 18.gif|File:Hunter Saxton eq traveling wave plot 18.gif |File:Hunter Saxton eq traveling wave plot 19.gif|File:Hunter Saxton eq traveling wave plot 19.gif |File:Hunter Saxton eq traveling wave plot 20.gif|File:Hunter Saxton eq traveling wave plot 20.gif |File:Hunter Saxton eq traveling wave plot 21.gif|File:Hunter Saxton eq traveling wave plot 21.gif |File:Hunter Saxton eq traveling wave plot 29.gif|File:Hunter Saxton eq traveling wave plot 29.gif |File:Hunter Saxton eq traveling wave plot 31.gif|File:Hunter Saxton eq traveling wave plot 31.gif |File:Hunter Saxton eq traveling wave plot 32.gif|File:Hunter Saxton eq traveling wave plot 32.gif |File:Hunter Saxton eq traveling wave plot 33.gif|File:Hunter Saxton eq traveling wave plot 33.gif | | | | }} ;雅可比橢圓函數展开 {{Gallery |width=250 |height=200 |align=center |File:Hunter Saxton traveling wave Jacobi function plot 35.gif|Hunter Saxton traveling wave Jacobi function plot 35.gif |File:Hunter Saxton traveling wave Jacobi function plot 36.gif|Jacobi function plot 35 |File:Hunter Saxton traveling wave Jacobi function plot 36.gif|Hunter Saxton traveling wave Jacobi function plot 36.gif |File:Hunter Saxton traveling wave Jacobi function plot 41.gif|Hunter Saxton traveling wave Jacobi function plot 41.gif |File:Hunter Saxton traveling wave Jacobi function plot 43.gif|Hunter Saxton traveling wave Jacobi function plot 43.gif |File:Hunter Saxton traveling wave Jacobi function plot 46.gif|Hunter Saxton traveling wave Jacobi function plot 46.gif | | | }} ==参考文献== <references/> # *谷超豪 《[[孤立子]]理论中的[[达布变换]]及其几何应用》 上海科学技术出版社 # *阎振亚著 《复杂非线性波的构造性理论及其应用》 科学出版社 2007年 # 李志斌编著 《非线性数学物理方程的行波解》 科学出版社 #王东明著 《消去法及其应用》 科学出版社 2002 # *何青 王丽芬编著 《[[Maple]] 教程》 科学出版社 2010 ISBN 9787030177445 #Graham W. Griffiths William E.Shiesser Traveling Wave Analysis of Partial Differential p135 Equations Academy Press # Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,1997 #Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Springer. #Eryk Infeld and George Rowlands,Nonlinear Waves,Solitons and Chaos,Cambridge 2000 #Saber Elaydi,An Introduction to Difference Equationns, Springer 2000 #Dongming Wang, Elimination Practice,Imperial College Press 2004 # David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004 # George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759 {{非线性偏微分方程}} {{Wikibooks|Maple/非线性偏微分方程#亨特 - 萨克斯顿方程|亨特 - 萨克斯顿方程}} [[Category:非线性偏微分方程]]
该页面使用的模板:
Template:Gallery
(
查看源代码
)
Template:Wikibooks
(
查看源代码
)
Template:非线性偏微分方程
(
查看源代码
)
返回
亨特 - 萨克斯顿方程
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息