查看“︁亥姆霍兹分解”︁的源代码
←
亥姆霍兹分解
跳转到导航
跳转到搜索
因为以下原因,您没有权限编辑该页面:
您请求的操作仅限属于该用户组的用户执行:
用户
您可以查看和复制此页面的源代码。
{{NoteTA |G1=Physics |G2=Math }} 在[[物理学]]和[[数学]]中的[[向量分析]]中,'''亥姆霍兹定理''',<ref>On Helmholtz's Theorem in Finite Regions. By [[Jean Bladel]]. Midwestern Universities Research Association, 1958.</ref><ref>Hermann von Helmholtz. Clarendon Press, 1906. By [[Leo Koenigsberger]]. p357</ref> 或称'''向量分析基本定理''',<ref>An Elementary Course in the Integral Calculus. By [[Daniel Alexander Murray]]. American Book Company, 1898. p8.</ref><ref>[[约西亚·吉布斯|J. W. Gibbs]] & [[Edwin Bidwell Wilson]] (1901) [https://archive.org/stream/117714283#page/236/mode/2up Vector Analysis], page 237, link from [[互联网档案馆|Internet Archive]]</ref><ref>Electromagnetic theory, Volume 1. By [[奧利弗·黑維塞|Oliver Heaviside]]. "The Electrician" printing and publishing company, limited, 1893.</ref><ref>Elements of the differential calculus. By [[Wesley Stoker Barker Woolhouse]]. Weale, 1854.</ref><ref>An Elementary Treatise on the Integral Calculus: Founded on the Method of Rates Or Fluxions. By [[William Woolsey Johnson]]. John Wiley & Sons, 1881.<br />参见:[[流数法]]。</ref><ref>Vector Calculus: With Applications to Physics. By [[James Byrnie Shaw]]. D. Van Nostrand, 1922. p205.<br />参见:[[格林公式]]。</ref><ref>A Treatise on the Integral Calculus, Volume 2. By [[Joseph Edwards (Mathematician)|Joseph Edwards]]. Chelsea Publishing Company, 1922.</ref> 指出对于任意足够[[光滑函数|光滑]]、快速衰减的三维[[向量场]]可分解为一个[[无旋向量场]]和一个[[螺线向量场]]的和,这个过程被称作'''亥姆霍兹分解'''。此定理以物理學家[[赫爾曼·馮·亥姆霍茲]]為名。<ref>参见: * H. Helmholtz (1858) [http://books.google.com/books?id=6gwPAAAAIAAJ&pg=PA25#v=onepage&q&f=false "Über Integrale der hydrodynamischen Gleichungen, welcher der Wirbelbewegungen entsprechen"] {{Wayback|url=http://books.google.com/books?id=6gwPAAAAIAAJ&pg=PA25#v=onepage&q&f=false |date=20140210091227 }} (On integrals of the hydrodynamic equations which correspond to vortex motions), ''Journal für die reine und angewandte Mathematik'', '''55''': 25-55. On page 38, the components of the fluid's velocity (u, v, w) are expressed in terms of the gradient of a scalar potential P and the curl of a vector potential (L, M, N). * However, Helmholtz was largely anticipated by George Stokes in his paper: G. G. Stokes (presented: 1849 ; published: 1856) [http://books.google.com/books?id=L_NYAAAAYAAJ&pg=PA1#v=onepage&q&f=false "On the dynamical theory of diffraction,"] ''Transactions of the Cambridge Philosophical Society'', vol. 9, part I, pages 1-62; see pages 9-10.</ref> 这意味着任何矢量场 {{math|'''F'''}},都可以视为两个势场([[純量勢]] {{mvar|φ}} 和[[向量勢]] {{math|'''A'''}})之和。 ==定理內容== 假定 {{math|'''F'''}} 為定義在有界區域 {{math|''V'' ⊆ '''R'''<sup>3</sup>}} 裡的二次連續可微向量場,且 {{mvar|S}} 為 {{mvar|V}} 的包圍面,則 {{math|'''F'''}} 可被分解成無[[旋度]]及無[[散度]]兩部份:<ref>{{cite web|url=http://www.cems.uvm.edu/~oughstun/LectureNotes141/Topic_03_(Helmholtz'%20Theorem).pdf|title=Helmholtz' Theorem|publisher=University of Vermont|deadurl=yes|archiveurl=https://web.archive.org/web/20120813005804/http://www.cems.uvm.edu/~oughstun/LectureNotes141/Topic_03_(Helmholtz'%20Theorem).pdf|archivedate=2012-08-13|accessdate=2014-08-14}}</ref> :<math>\mathbf{F}=-\boldsymbol{\nabla}\Phi+\boldsymbol{\nabla}\times\mathbf{A}</math>, 其中 :<math>\Phi\left(\mathbf{r}\right)=\frac{1}{4\pi}\int_{V}\frac{\boldsymbol{\nabla}'\cdot\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V' -\frac{1}{4\pi}\oint_{S}\mathbf{\hat{n}}'\cdot\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'</math> :<math>\mathbf{A}\left(\mathbf{r}\right)=\frac{1}{4\pi}\int_{V}\frac{\boldsymbol{\nabla}'\times\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V' -\frac{1}{4\pi}\oint_{S}\mathbf{\hat{n}}'\times\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'</math> 如果 {{math|''V'' {{=}} '''R'''<sup>3</sup>}},且 {{math|'''F'''}} 在無窮遠處消失的比 <math>1/r</math> 快,則純量勢及向量勢的第二項為零,也就是說 <ref name="griffiths">David J. Griffiths, ''Introduction to Electrodynamics'', Prentice-Hall, 1999, p. 556.</ref> :<math>\Phi\left(\mathbf{r}\right)=\frac{1}{4\pi}\int_{\text{all space}}\frac{\boldsymbol{\nabla}'\cdot\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'</math> :<math>\mathbf{A}\left(\mathbf{r}\right)=\frac{1}{4\pi}\int_{\text{all space}}\frac{\boldsymbol{\nabla}'\times\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'</math> ==推導== 假定我們有一個向量函數<math>\mathbf{F}\left(\mathbf{r}\right)</math>,且其旋度<math>\boldsymbol{\nabla}\times\mathbf{F}</math>及散度<math>\boldsymbol{\nabla}\cdot\mathbf{F}</math>已知。利用[[狄拉克δ函数]]可將函數改寫成 :<math>\delta\left(\mathbf{r}-\mathbf{r}'\right)=-\frac{1}{4\pi}\nabla^{2}\frac{1}{\left|\mathbf{r}-\mathbf{r}'\right|}</math>, :<math>\mathbf{F}\left(\mathbf{r}\right)=\int_{V}\mathbf{F}\left(\mathbf{r}'\right)\delta\left(\mathbf{r}-\mathbf{r}'\right)\mathrm{d}V'=\int_{V}\mathbf{F}\left(\mathbf{r}'\right)\left(-\frac{1}{4\pi}\nabla^{2}\frac{1}{\left|\mathbf{r}-\mathbf{r}'\right|}\right)\mathrm{d}V'=-\frac{1}{4\pi}\nabla^{2}\int_{V}\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'</math>。 利用以下等式 :<math>\nabla^{2}\mathbf{a}=\boldsymbol{\nabla}\left(\boldsymbol{\nabla}\cdot\mathbf{a}\right)-\boldsymbol{\nabla}\times\left(\boldsymbol{\nabla}\times\mathbf{a}\right)</math>, 可得 :<math>\mathbf{F}\left(\mathbf{r}\right)=-\frac{1}{4\pi}\left[\boldsymbol{\nabla}\left(\boldsymbol{\nabla}\cdot\int_{V}\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)-\boldsymbol{\nabla}\times\left(\boldsymbol{\nabla}\times\int_{V}\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)\right]</math> :::<math>=-\frac{1}{4\pi}\left[\boldsymbol{\nabla}\left(\int_{V}\mathbf{F}\left(\mathbf{r}'\right)\cdot\boldsymbol{\nabla}\frac{1}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)+\boldsymbol{\nabla}\times\left(\int_{V}\mathbf{F}\left(\mathbf{r}'\right)\times\boldsymbol{\nabla}\frac{1}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)\right]</math>。 注意到<math>\boldsymbol{\nabla}\frac{1}{\left|\mathbf{r}-\mathbf{r}'\right|}=-\boldsymbol{\nabla}'\frac{1}{\left|\mathbf{r}-\mathbf{r}'\right|}</math>,我們可將上式改寫成 :<math>\mathbf{F}\left(\mathbf{r}\right)=-\frac{1}{4\pi}\left[-\boldsymbol{\nabla}\left(\int_{V}\mathbf{F}\left(\mathbf{r}'\right)\cdot\boldsymbol{\nabla}'\frac{1}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)-\boldsymbol{\nabla}\times\left(\int_{V}\mathbf{F}\left(\mathbf{r}'\right)\times\boldsymbol{\nabla}'\frac{1}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'\right)\right]</math>。 利用以下二等式, :<math>\mathbf{a}\cdot\boldsymbol{\nabla}\psi=-\psi\left(\boldsymbol{\nabla}\cdot\mathbf{a}\right)+\boldsymbol{\nabla}\cdot\left(\psi\mathbf{a}\right)</math> :<math>\mathbf{a}\times\boldsymbol{\nabla}\psi=\psi\left(\boldsymbol{\nabla}\times\mathbf{a}\right)-\boldsymbol{\nabla}\times\left(\psi\mathbf{a}\right)</math>。 可得 :<math>\mathbf{F}\left(\mathbf{r}\right)=-\frac{1}{4\pi}\left[-\boldsymbol{\nabla}\left( -\int_{V}\frac{\boldsymbol{\nabla}'\cdot\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V' +\int_{V}\boldsymbol{\nabla}'\cdot\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V' \right)-\boldsymbol{\nabla}\times\left( \int_{V}\frac{\boldsymbol{\nabla}'\times\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V' -\int_{V}\boldsymbol{\nabla}'\times\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V' \right)\right]</math>。 利用[[散度定理]],方程式可改寫成 :<math>\mathbf{F}\left(\mathbf{r}\right)=-\frac{1}{4\pi}\left[-\boldsymbol{\nabla}\left( -\int_{V}\frac{\boldsymbol{\nabla}'\cdot\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V' +\oint_{S}\mathbf{\hat{n}}'\cdot\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S' \right)-\boldsymbol{\nabla}\times\left( \int_{V}\frac{\boldsymbol{\nabla}'\times\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V' -\oint_{S}\mathbf{\hat{n}}'\times\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S' \right)\right]</math> :::<math>= -\boldsymbol{\nabla}\left[\frac{1}{4\pi}\int_{V}\frac{\boldsymbol{\nabla}'\cdot\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V' -\frac{1}{4\pi}\oint_{S}\mathbf{\hat{n}}'\cdot\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'\right] +\boldsymbol{\nabla}\times\left[\frac{1}{4\pi}\int_{V}\frac{\boldsymbol{\nabla}'\times\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V' -\frac{1}{4\pi}\oint_{S}\mathbf{\hat{n}}'\times\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'\right] </math>。 定義 :<math>\Phi\left(\mathbf{r}\right)\equiv\frac{1}{4\pi}\int_{V}\frac{\boldsymbol{\nabla}'\cdot\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V' -\frac{1}{4\pi}\oint_{S}\mathbf{\hat{n}}'\cdot\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'</math> :<math>\mathbf{A}\left(\mathbf{r}\right)\equiv\frac{1}{4\pi}\int_{V}\frac{\boldsymbol{\nabla}'\times\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V' -\frac{1}{4\pi}\oint_{S}\mathbf{\hat{n}}'\times\frac{\mathbf{F}\left(\mathbf{r}'\right)}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}S'</math> 所以 :<math>\mathbf{F}=-\boldsymbol{\nabla}\Phi+\boldsymbol{\nabla}\times\mathbf{A}</math> === 利用傅利葉轉換做推導 === (疑似有错误) 將'''F'''改寫成[[傅利葉轉換]]的形式: :<math>\vec{\mathbf{F}}(\vec{r}) = \iiint \vec{\mathbf{G}}(\vec{\omega}) e^{\displaystyle i \, \vec{\omega} \cdot \vec{r}} d\vec{\omega} </math> 純量場的傅利葉轉換是一個純量場,向量場的傅利葉轉換是一個維度相同的向量場。 現在考慮以下純量場及向量場: :<math>\begin{array}{lll} G_\Phi(\vec{\omega}) = i\, \frac{\displaystyle \vec{\mathbf{G}}(\vec{\omega}) \cdot \vec{\omega}}{||\vec{\omega}||^2} & \quad\quad & \vec{\mathbf{G}}_\mathbf{A}(\vec{\omega}) = i\, \vec{\omega} \times \left( \vec{\mathbf{G}}(\vec{\omega}) + i G_\Phi(\vec{\omega}) \, \vec{\omega} \right) \\ && \\ \Phi(\vec{r}) = \displaystyle \iiint G_\Phi(\vec{\omega}) e^{\displaystyle i \, \vec{\omega} \cdot \vec{r}} d\vec{\omega} & & \vec{\mathbf{A}}(\vec{r}) = \displaystyle \iiint \vec{\mathbf{G}}_\mathbf{A}(\vec{\omega}) e^{\displaystyle i \, \vec{\omega} \cdot \vec{r}} d\vec{\omega} \end{array} </math> 所以 :<math> \vec{\mathbf{G}}(\vec{\omega}) = - i \,\vec{\omega} \, G_\Phi(\vec{\omega}) + i \, \vec{\omega} \times \vec{\mathbf{G}}_\mathbf{A}(\vec{\omega}) </math> :<math> \begin{array}{lll}\vec{\mathbf{F}}(\vec{r}) &=& \displaystyle - \iiint i \, \vec{\omega}\, G_\Phi(\vec{\omega}) \, e^{\displaystyle i \, \vec{\omega} \cdot \vec{r}} d\vec{\omega} + \iiint i \, \vec{\omega} \times \vec{\mathbf{G}}_\mathbf{A}(\vec{\omega}) e^{\displaystyle i \, \vec{\omega} \cdot \vec{r}} d\vec{\omega} \\ &=& - \boldsymbol{\nabla} \Phi(\vec{r}) + \boldsymbol{\nabla} \times \vec{\mathbf{A}}(\vec{r}) \end{array} </math> ==注释== {{reflist}} == 参考文献 == ===一般参考文献=== * [[George B. Arfken]] and Hans J. Weber, Mathematical Methods for Physicists, 4th edition, Academic Press: San Diego (1995) pp. 92–93 * George B. Arfken and Hans J. Weber, Mathematical Methods for Physicists International Edition, 6th edition, Academic Press: San Diego (2005) pp. 95–101 ===弱形式的参考文献=== * C. Amrouche, C. Bernardi, M. Dauge, and V. Girault. "Vector potentials in three dimensional non-smooth domains." ''Mathematical Methods in the Applied Sciences'', '''21''', 823–864, 1998. * R. Dautray and J.-L. Lions. ''Spectral Theory and Applications,'' volume 3 of Mathematical Analysis and Numerical Methods for Science and Technology. Springer-Verlag, 1990. * V. Girault and P.A. Raviart. ''Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms.'' Springer Series in Computational Mathematics. Springer-Verlag, 1986. == 外部链接 == *[http://mathworld.wolfram.com/HelmholtzsTheorem.html Helmholtz theorem] {{Wayback|url=http://mathworld.wolfram.com/HelmholtzsTheorem.html |date=20191224172544 }}([[MathWorld]]) {{基本定理}} [[Category:向量分析]] [[Category:分析定理]] [[Category:解析几何]] [[Category:微積分定理]]
该页面使用的模板:
Template:Cite web
(
查看源代码
)
Template:Math
(
查看源代码
)
Template:Mvar
(
查看源代码
)
Template:NoteTA
(
查看源代码
)
Template:Reflist
(
查看源代码
)
Template:Wayback
(
查看源代码
)
Template:基本定理
(
查看源代码
)
返回
亥姆霍兹分解
。
导航菜单
个人工具
登录
命名空间
页面
讨论
不转换
查看
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息